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Preface

Omnia profecto cum se coelestibus rebus referet ad humanas, excelsius magnificentiusque,
et dicus et sentiet. (The contemplation of celestial things will make a man both speak and
think more sublimely and magnificently when he descends to human affairs.)

—Cicero

IT IS INEVITABLE that with the passage of time Einstein’s general relativity theory,
his theory of gravitation, will be taught more frequently at an undergraduate level.
It is a difficult theory—but just as some athletic records fifty years ago nﬁght have
been deemed nearly impossible to achieve, and today will be surpassed regularly by
well-trained university sportsmen, likewise Einstein’s theory, now over seventy-five
years since creation, is after a lengthy gestation making its way into the world of
undergraduate mathematics and physics courses, and finding a more or less permanent
place in the syllabus of such courses. The theory can now be considered both an
accessible and a worthy, serious object of study by mathematics and physics students
alike who may be rather above average in their aptitude for these subjects, but who are
not necessarily proposing, say, to embark on an academic career in the mathematical
sciences. This is an excellent state of affairs, and can be regarded, perhaps, as yet
another aspect of the overall success of the theory.

But the study of general relativity at an undergraduate level does present some
special problems. First of all, the content of the course must be reasonably well
circumscribed. At a graduate or research level treatment it may be necessary and
even desirable for the course to veer off asymptotically into more and more difficult
and obscure material, eventually reaching the ‘cutting edge’ of the subject (the edge
where the theory no longer cuts). For an undergraduate course this will not do—and
this will mean some material has to be omitted; but that is not a serious worry: what
is required (and this goes especially for the presentation in lectures) is that subtle
blend of seriousness and stimulation that cannot really be prescribed or explained,
but is as rare as it is easily recognized. Whether we have fulfilled this requirement
very satisfactorily is doubtful; but we have succeeded in omitting some material.

Another function that an undergraduate course must satisfy is that is should be
examinable. This means slightly less emphasis on the sort of lengthy calculations and
verifications that are typically put forth as problems in the ‘trade’ books (though such
problems are in the right context useful and important) and more emphasis on the
slightly shorter type of problem that requires some thinking for its solution—problems
that, as G.H. Hardy might have said, show a bit of spin. We cannot claim that our
problems are being bowled so artfully, or even that that’s always what’s intended;



but it can be pointed out that a number of the problems appearing at the ends of
- chapters have been set on past papers of undergraduate examinations at Oxford, and
that these, and other problems set in the same spirit, may be useful not only for the
lofty purpose of enriching one’s comprehension of a noble subject, but also for the
mundane but very important matter of proving to the rest of the world that one’s
comprehension has indeed been enriched!

A number of our colleagues have helped us in various ways in the preparation of this
material—either by providing us with problems or ideas for problems, or by reading
portions of the original lecture notes on which the course is based and offering criticism
and useful feedback, or pointing out errors; and we would particularly like to thank
David Bernstein, Tom Hurd, Lionel Mason, Tristan Needham, David Samuel, and Nick
Woodhouse for this. Roger Penrose has in his publications and lectures suggested a
number of points of approach and presentation that we have used or adapted, for
which we offer here summarily our acknowledgements and thanks—for indeed much of
the subject as it presently stands bears the imprint of his significant influence. And for
the mathematical typesetting we would like to thank Jian Peng of Oxford University
Computing Laboratory.

L.P.Hughston

Robert Fleming & Co. Limited
25 Copthall Avenue

London EC2R 7DR

United Kingdom

K.P.Tod

The Mathematical Institute
Oxford OX1 3LB

United Kingdom
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1 Introduction

1.1 Space, time, and gravitation

GENERAL RELATIVITY is Einstein’s theory of gravitation. It is not only a theory
of gravity: it is a theory of the structure of space and time, and hence a theory of the
dynamics of the universe in its entirety. The theory is a vast edifice of pure geometry,
indisputably elegant, and of great mathematical interest.

When general relativity emerged in its definitive form in November 1915, and be-
came more widely known the following year with the publication of Einstein’s famous
exposé Die Grundlage der allgemeinen Relativititstheorie in Annalen der Physik, the
notions it propounded constituted a unique, revolutionary contribution to the progress
of science. The story of its rapid, dramatic confirmation by the bending-of-light mea-
surements associated with the eclipse of 1919 is thrilling part of the scientific history.
The theory was quickly accepted as physically correct—but at the same time acquired
a reputation for formidable mathematical complexity. So much so that it is said that
when an American newspaper reporter asked Sir Arthur Eddington (the celebrated
astronomer who had led the successful solar eclipse expedition) whether it was true
that only three people in the world really understood general relativity, Eddington
swiftly replied, “Ah, yes—but who’s the third?”

The revolutionary character of Einstein’s gravitational theory lies in the change of
attitude towards space and time that it demands from us. Following Einstein’s ex-
traordinary 1905 paper on special relativity (Zur Elektrodynamik bewegter Korper,
in Annalen der Physik) a major step forward was taken by the mathematician Her-
mann Minkowski (1864-1909) who recognized that the correct way to view special
relativity, and in particular the Lorentz transformation, was in terms of a single entity
space-time, rather than a mere jumbling up of space and time coordinates.

His famous 1908 address Space and Time opens theatrically with the following
words: “The views of space and time that I wish to lay before you have sprung from
the soil of experimental physics, and therein lies their strength. They are radical.
Henceforth space by itself and time by itself, are doomed to fade away into mere
shadows, and only a kind of union of the two will preserve an independent reality.”
And how right he was. It was in Minkowski’s work that many of the geometrical ideas
so important to a correct, thorough understanding of relativity were first introduced—
particle world-lines, space-like and time-like vectors, the forward and backward null
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cones—ideas that all carry over also into general relativity. Minkowski space (as the
flat Lorentzian space-time manifold of special relativity is now called) was seen to be
the proper arena for the description of special relativistic physical phenonena—a point
of view that Einstein himself was quickly to embrace. “We are compelled to admit,”
writes Minkowski in the same 1908 address, “that it is only in four dimensions that the
relations here taken under consideration reveal their inner being in full simplicity, and
that on a three dimensional space forced upon us a priori they cast a very complicated
projection.”

1.2 The dynamics of the universe in its entirety

But general relativity goes much further, and incorporates the gravitational field into
the structure of space-time itself. Since gravitational fields can vary from place to
place, this means that space-time also must vary in some way from place to place. The
mathematical framework that deals with geometries that vary from point to point 1s
called differential geometry; and it is a particular species of differential geometry called
Riemannian geometry—named after Bernhard Riemann (1826-1866) who among his
many mathematical achievements founded the general theory of higher dimensional
curved spaces—that offers the analytical basis for a description of the gravitational
field. Einstein himself was to remark (in The Meaning of Relativity) that “the mathe-
matical knowledge that has made it possible to establish the general theory of relativity
we owe to the geometrical investigations of Gauss and Riemann.”

And thus we are left to marvel that Einstein was led to such a refined, abstract
branch of pure geometry for his relativistic theory of gravitation. “It is my conviction,”
he writes in his 1933 Herbert Spencer lecture at Oxford, “that pure mathematical
construction enables us to discover the concepts, and the laws connecting them, that
give us the key to the understanding of the phenomena of Nature.” It was easy,
perhaps, for Einstein to say this in 1933. By that time he was recognized throughout
the world as a genius. His theories had transformed the shape of physical science.
And yet another accolade has been bestowed upon him in the years immediately
preceding—the American astronomer Edwin Hubble (1889-1953) had announced in
1929 his discovery that the universe was expanding!—that remote galaxies showed
a red shift systematically correlated with their distance. This observation was very
much in accord with the pattern of results suggested by general relativity, and opened
the door to yet another new branch of physics: relativistic cosmology.

1.3 What is so special about general relativity?

The road to special relativity had been swift and straight, with most of the essentials
accomplished in Einstein’s first article on the subject, his 1905 paper. The famous
E = mc? formula follows shortly thereafter in a brief note entitled Ist die Trégheit
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eines Korpers von seinem Energiegehalt abhangig? (Does the inertia of a body depend
upon its energy-content?) which ends with the speculation that “It is not impossible
that with bodies whose energy-content is variable to a high degree (e.g. with radium
salts) the theory may be successfully put to the test.” Capped with Minkowski’s
mathematics, the theory was then set for a successful launch onto the high seas of
twentieth century physics—and is still very much afloat.

So much for Albert Einstein (1879-1955) at age twenty-six: the genesis of general
relativity, however, was a far less straightforward matter, and took the better part
of a decade. One is reminded of the way in which some musical pieces seem to have
sprung, as it were, fully composed from the musician’s head—one gets this impression,
for example, in many of the writings of Bach; whereas other pieces are clearly arrived
at only after extensive revisions, with ideas being gradually assembled in the course of
a tortured creative process spread over a period of some time—in this case Beethoven
comes to mind as possibly the best example, and one also thinks particularly of Mahler.
If special relativity belongs to the first category of composition, then general relativity
certainly falls into the second.

Nevertheless, despite its complex origins, a Beethoven symphony or quartet does
bave a certain finality to it—a certain undeniable perfection; and much the same can
be said of Einstein’s gravitational theory. It has that rare quality about it that excites
all of one’s attentions in a physical theory: it has an air of permanence.

And it is, perhaps, this aspect of Einstein’s theory that makes it (quite apart from
its necessary interest to professional physicists, as a key component to our present
understanding of nature) a subject worthy of intellectual enquiry by students who,
after coming to understand it, will not in any ordinary sense have any practical use
for it. It is a work of art.

1.4 The mercurial matter of Mercury

In December 1907 Einstein wrote to his friend Conrad Habicht (1876-1958) that he
was “..busy working on relativity theory in connection with the law of gravitation,
with which I hope to account for the still unexplained secular changes in the perihelion
motion of the planet Mercury—so far it doesn't seem to work.” Einstein, Habicht, and
another friend Maurice Solovine (1875-1958) had known one another in Bern (where
Einstein had taken up his job at the patent office in 1902) and had met regularly under
the auspices of the Olympian Academy (founded by and comprising just the three
of them) to discuss and debate philosophical, scientific, and literary matters. They
read together from the works of Plato, Sophocles, Cervantes, Hume, Spinoza, Racine,
Dickens, Mach, and Poincaré, amongst other authors. How exciting those evenings
must have been! What else might they have read? (One is reminded somehow of
Oscar Wilde’s remark, “I have made an important discovery—that alcohol, taken in
sufficient quantities, produces all the effects of intoxication.”) Einstein evidently felt
at ease with Habicht to discuss his ambitions and frustrations. And it was eight years
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later in 1915 that Einstein was able in a letter to the physicist Paul Ehrenfest (1880-
1933) to report that “for a few days, I was beside myself with joyous excitement” over
the correct explanation of Mercury’s orbit, which he had recently obtained.

1.5 An idée fixe

But why this apparent obsession with the misbehaviour of Mercury’s orbit? Why dwell
on this little detail? The problem with Mercury had been known since the middle of
the nineteenth century. According to Newton's theory, and as first hypothesized by
Kepler, the orbit of an ideal planet is a perfect ellipse, with the Sun located at one of
the foci, as illustrated below.

-
\_

Figure 1.1.  The shift of Mercury’s perihelion. With each revolution the axis of the
ellipse moves through a small angle A in the direction of revolution.

The semi-major axis a and the semi-minor axis b are related by ¥ = a?(1 — €2),
where e is the eccentricity. The sun is offset from the center of the ellipse by a distance
ae, and the equation of the orbit is given by

a(l —e?)
"T1 +ecosé
where r is the distance between the sun and the planet, and 8 is the angle between the
line joining the sun and the planet, and the semi-major axis through S. Clearly where
8 = 0 the planet is at its perihelion (point of closest approach) with r = a(1 — ¢e);
whereas when 8 = 7 the planet is most distant, at its aphelion, with r = a(1 + €).

In reality planetary orbits are not perfect ellipses, owing primarily to the perturbing
effects of other planets. This was of course well-appreciated by Newton, who in De
Motu (version IIIB) observes that “...the planets neither move exactly in an ellipse,
nor revolve twice in the same orbit—there are as many orbits to a planet as it has
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revolutions—and the orbit of any one planet depends on the combined motion of all
of the planets, not to mention the action of all these on each other. But to consider
simultaneously all the causes of motion and to define these motions by exact laws
allowing of convenient calculation exceeds, unless I am mistaken, the force of the
entire human intellect.”

Fortunately, the perturbing effects are relatively small, and one can treat the orbits
as approximately elliptical, studying the deviation from perfect ellipticity, as induced
by effects such as those mentioned by Newton. Notable among these is the effect of
a small rotation in the axis of the ellipse, which can be measured by the angle A by
which the perihelion shifts, per revolution, from its previous position. For Mercury,
planetary influences result in a perihelion shift of roughly 500" (seconds of arc) per
century. Since Mercury’s period is about one quarter that of the Earth, this works
out to about 1.25" per orbit—not very much! Around 260,000. years are required for
the precession to go all the way around. But it does happen.

The anomaly in Mercury’s orbit was discovered by the French astronomer Urbain
Jean Joseph Le Verrier (1811-1877) in 1859. He showed that there was a discrep-
ancy between observation and theory—by a figure which (according to present-day
measurements) amounts to an excess motion in the perihelion shift of about 43" per
century. This was the ‘still unexplained change’ in Mercury’s orbit that had caught
Einstein’s attention in 1907.

1.6 Beside himself with joy

The history of attempts to explain this phenomenon is an elaborate affair, and makes
a very interesting chapter in the history of astronomy. In essence, either a mysterious
new planet, or some form of hidden quasi-planetary material, had to be present—or
the laws of gravity needed to be modified.

On the latter point it is indeed straightforward enough to ‘induce’ a systematic
perihelion shift by means of a slight modification of Newton’s laws: Newton himself
had noted, for example, that if the gravitational force obeyed not an inverse square
law but rather, say, a modified force-law of the form

o ar™ —3 Bre
r
where a,3,m,n are constants, then the angle 6 between successive perihelia (6 =

2m + A) is given by
( (1—,3 )1/2
=27 ——
ma —nf

Thus in particular if F = ar™~3 we have § = 2rm~1/2. By today’s way of thinking
(which as a consequence of Einstein’s scientific work has become much more Platonic)
such a modification of Newton’s theory strikes us as rather vulgar—but a hundred
years ago the approach was taken seriously as a possible explanation of Mercury’s
anomaly. It doesn’t work.
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Einstein, however, was able in his theory to deduce a very elegant formula for the
perihelion effect, given by

2473a?
T2c2(1 — e2)
where T is the period of the orbit, and ¢ is the speed of light. No wonder, given
the accuracy with which it accounts for the observed orbits, that Einstein was beside
himself with joy at the discovery of this relation. One can imagine the profound
shock it must have given him to have encountered such a vivid confirmation of his
ideas—a confirmation of the sublime relations holding between the abstractions of the
space-time continuum, and something so down to earth as the science of the solar
system.

A=

1.7 Rudis indigestaque moles

This may give us an intimation as to why the theory has been lifted to such preeminent
esteem by the cognoscente of successive generations. By comparison, the scope of other
physical theories, indeed much of science as a whole, takes on the character of ‘a rough
and confused mass.’

General relativity is a theory of some complexity, and it does involve a good deal
of fairly difficult mathematics. Nevertheless it is possible—providing one is willing to
take a number of details on faith—to present an overview of the theory, reducing it to
its most basic mathematical elements.

Space-time, according to Einstein’s theory, is a four-dimensional manifold (the
‘space-time continuum’). The manifold looks locally like a piece of R*, but there
are two important distinctions: the various ‘pieces’ do not necessarily fit together to
form a global R* (what they do form is typically something more complicated); and
even locally the geometry is not Euclidean, nor even flat (like the Lorentzian geometry
of special relativity).

The space-time is covered by a series of coordinate patches U;, and in each coordinate
patch we have a set of coordinates z° (a = 0,1,2,3). The basic, underlying geometry
of the manifold (its differentiable structure) is determined by the relations holding
between systems of coordinates in overlapping patches.

The mathematical tool used for studying manifolds is called tensor calculus. A
tensor is a sort of a many-index analogue of a vector. Differentiation of tensors is a
intricate matter since the value of the derivative of a tensor can apparently depend
(in a coordinate overlap region) on which set of coordinates is used to perform the
differentiation. This situation is remedied by the introduction in each coordinate
patch of a special three-index array of functions denoted I'j, called the ‘connection’.
The connection is required to transform in a particular way in coordinate transition
(i.e. overlap) regions. The correct derivative of a tensor is then taken by means of a
slightly complicated operation that involves systematic use of these special connection
symbols. The resulting process—called ‘covariant differentiation’ has a multitude of
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natural, compelling features. (The covariant derivative of a tensor A%¢ is denoted
V. A to distinguish it from the array of partial derivatives 8, A% where 8, = 0/0z*.
More explicitly, the covariant derivative V, A% is given by an expression of the form
8, Abe + I";I,A”C + T ﬁqA"q.) When the operations of calculus in this way become well-
defined we say that the space-time has the structure of a differentiable manifold with
connection.

1.8 The metric tensor

But in what sense is the manifold a space-time manifold? In special relativity the
metrical properties of space and time are determined by a ‘Lorentzian’ metric with a
pseudo-Euclidean signature, given by

ds? = dt? — da? — dy® — dz°.

In the case of a material particle the infinitesimal interval ds represents the change
in ‘proper time’ (i.e. time as measured by its own natural clock) experienced by the
particle when in undergoes a displacement in space-time given by (dt, dz, dy, dz). Units
are chosen such that the speed of light is one. Note that if dz, dy, and dz vanish, then
the proper time s agrees with the coordinate . Thus ¢ can be interpreted as the time
measured by an observer at rest.at the origin in this system of coordinates. But if dz is
greater than zero, say, then ds must be less than dt. So we see that while an observer
at the origin measures an interval of time dt, a moving body instead measures the
interval given by ds? = dt? — dz?, or more explicitly ds = (1 —v?)?dt where v = dz/dt
is the velocity of the moving observer relative to the origin. And thus time seems to
be going more ‘slowly’ for the moving particle.

The infinitesimal interval of special relativity can be written more compactly by use
of an index notation in the form

ds? = nabda:“da:b

where dz® (a = 0,1,2,3) is the space-time displacement, and 7, is the flat metric
of special relativity with diagonal components (1, -1, —1,—1). Summation is implied
over the repeated indices. In general relativity the idea is that the geometry of space-
time varies from point to point—and this is represented by allowing the metric to
be described by a tensor field g4 that varies over the space-time. The infinitesimal
interval is then given by

ds® = gabdzadmb,

where g, is a four-by-four symmetric, non-degenerate matrix. It was Einstein’s key
recognition that the gravitational field could be embodied in the specification of the
space-time manifold M and its ‘curved’ Lorentzian metric ¢g,3. The idea that M is a
space-time is implicit in the requirement that g, should have signature (+,—, —, —);
i.e. that it should have three negative eigenvalues, and one positive eigenvalue.
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One immediate consequence of the formula ds? = g,;dz%dz® is that the proper time
experienced by a particle depends on the nature of the gravitational field through which
it may be passing. This leads to a gravitational time dilation effect, which is one of
the important features of the theory—when light is emitted in the neighbourhood of a
strong gravitational field (e.g. near the Sun) it is seen to be red-shifted when received
in the vicinity of a weaker field (e.g. at the Earth’s surface).

1.9 The Levi-Civita connection

The flat space-time of special relativity is called Minkowski space, and g,5 can be
regarded as ‘fixed’ throughout the manifold. But in a curved space-time gq; varies
from point to point in an essential way.

Therefore to set up a workable physical theory one needs a relation between the met-
rical properties of the space-time (as determined by g¢,5) and the operations of tensor
calculus (as determined by the connection I'S;). This is established by a powerful
result known as the fundamental theorem of Riemannian geometry. According to this
theorem the space-time metric determines the associated connection I'S, according to
a remarkable formula, given by

1
F:c = Egad(abgcd + 8cgbd - 8-1961:)

where g% is the inverse of gqs (so g*%gsc = 62), and 9, again denotes 8/8z®. The
connection thus determined is called the Levi-Civita connection, and the corresponding
covariant derivative V, has the important property that when applied to the metric
tensor it gives the result zero: V,¢s, = 0, i.e. the metric is ‘covariantly constant’. The
point of the theorem is that given g,; the connection is determined uniquely by this

property.

1.10 The field equations

Sitting at the apex of the theory are Einstein’s equations for the gravitational field.
These are the equations that relate g,; to the local distribution of matter, and are
thus in many respects analogous to the Newton-Poisson equation V2® = 47G)p which
relates the grativational potential @ to the matter density p, where G is the gravita-
tional constant. But is should be stressed that Einstein’s equations amount to rather
more than a mere ‘relativistic upgrade’ of the Newtonian equation—this will become
apparent as details of the theory become understood.

The essence of Einstein’s theory can be understood as follows. According to the
classical theory of continuum mechanics, the equations of motion and the conservation
laws for energy, momentum, and angular momentum are embodied in the requirement
that a special tensor T called the stress tensor should be ‘conserved’—conserved in
the sense that its divergence V,T?® vanish. Now to grasp this requires something of
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a leap in both faith and imagination, since the idea applies to a variety of physical
theories, and when these theories are cast in their relativistic form the specification of
Tt is not always an obviously well-posed problem with a unique answer. Nevertheless
for practical purposes one can account for the matter content of space-time by the
specification of a symmetric tensor T*® with vanishing divergence. For example, in
the case of an ideal fluid we have

T = (p + p)u°u® — pg**

where p is the energy density, p is the pressure, and u® is the four-velocity field. The
vanishing of the divergence of T leads to Euler’s equations of motion for the fluid,
and to the conservation equations for the energy of the fluid.

Now it turns out that from I'¢, one can build up a special tensor G?® that auto-
matically has vanishing divergence. This tensor is called the Einstein tensor, and is
given explicitly by a simple formula involving terms linear in the first derivatives of
I'f, and terms quadratic in I'f, itself. Einstein was led in his investigations to pro-
pose that G®®, which is built up geometrically from g¢,3, must be proportional to the
stress tensor, and that the factor of the proportionality should be determined by the
gravitational constant:

G** = 8nGT?®.

In this way T*? acts as the ‘source’ of the gravitational field (as does p in the Newton-
Poisson equation), whereas the metric g,; thereby determined acts itself on the matter
distribution through the requirement that the divergence V,T*® vanishes where V,
is the Levi-Civita connection determined by gq5. And at the same time the matter
distribution T%® can depend algebraically on properties of g,;, as seen for example in
the case of the fluid stress tensor illustrated above.

Thus Einstein’s equations are riddled with non-linearities. This has a number of
consequences—not least of which are the difficulties encountered in the construction
of exact solutions. And Newton’s remarks on the complexities of the many-body
problem apply in general relativity even to the two-body problem—since a ‘third
body’ does in effect appear in the form of gravitational radiation! Nevertheless many
exact solutions are known, and much is known now even about situations where it has
not been possible to arrive at a complete description. It is worth bearing in mind that
although Einstein’s theory remains unchanged in its basic content since its origination
in 1915, nevertheless a good deal of work has gone on in the meanwhile, and much is
understood now that previously lay shrouded in obscurity, or was simply unknown on
account of the lack of appropriate mathematical tools.

But more cannot be said without some systematic development of these tools—a
task to which we now turn.



2 Vectors and tensors in flat three-space:

old wine in a new bottle

‘I have made a great discovery in mathematics; I have suppressed the summation sign every
time that the summation must be made over an index that occurs twice ...’

—Albert Einstein (remark made to a friend)

2.1 Cartesian tensors: an invitation to indices

LOCAL DIFFERENTIAL GEOMETRY consists in the first instance of an amplifica-
tion and refinement of tensorial methods. In particular, the use of an index notation
is the key to a great conceptual and geometrical simplification. We begin therefore
with a transcription of elementary vector algebra in three dimensions. The ideas will
be familiar but the notation new. It will be seen how the index notation gives one
insight into the character of relations that otherwise might seem obscure, and at the
same time provides a powerful computational tool.

The standard Cartesian coordinates of 3-dimensional space with respect to a fixed
origin will be denoted z; (i = 1,2,3) and we shall write A = 4; to indicate that
the components of a vector A with respect to this coordinate system are A;. The
magnitude of A is given by A+ A = A4; A;. Here we use the Einstein summation
convention, whereby in a given term of an expression if an index appears twice an
automatic summation is performed: no index may appear more than twice in a given
term, and any ‘free’ (i.e. non-repeated) index is understood to run over the whole
range. Thus 4;A4; is an abbreviation for >-; A;A;, and the scalar product between two
vectors A and B is given by A . B = 4; B;.

Multiple index quantities often arise out of problems in geometry and physics. The
most basic of these is the Kronecker delta 6;; defined by §;; = 1if i = § and 6;5 =0if
i # j. It is essentially the identity matrix, and as a consequence can readily be seen
to satisfy 8;; = 8;;, 6i;6;x = bix, 8i;; = 3, and 6;;A; = A, for any vector A;.

Another important multiple index quantity is the permutation tensor or epsilon
tensor, defined by:

-1 if ¢jk is an odd permutation of 123

1 if {5k is an even permutation of 123
Eijk = {
0 otherwise, i.e. if ijk are not all distinct.

One readily verifies that e;;x = € = £4ij and that €ijk = —€jik, and g;;; = 0.
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Most of the basic identities of vector algebra and vector calculus arise as a con-
sequence of a special relation that holds between é;; and ¢;;i, called the contracted
epsilon identity:

€iabEipg = OapObg — daqbbp. (2.1.1)

Thus when two epsilon tensors are ‘contracted’ together over their first indices the
result can be decomposed into a sum of expressions involving the Kronecker delta.
The result is sufficiently basic that it is worth memorizing. Examples of its utility
follow forthwith.

The vector product or wedge product C = A A B of two vectors can be expressed
by use of epsilon as follows:

C,’ = 6,‘jkAjBk. (2.1.2)
The scalar triple product of three vectors is
eijx PiQ;Ry =P - (QAR) =[P,Q,R]. (2.1.3)
Note how the cyclic property of the scalar triple product
P-(QAR)=Q-(RAP)=R-(PAQ)
follows at once from the expression ¢;;4P;Q ; Ry by virtue of the identity
Eijk = €jki = Ekij-

In the case of the repeated vector product A A (B A C) we derive the following

familiar identity:
AAN(BAC) =c¢ijrAj(erpe BoCy)

= €kijekpgA;BpCy

= (bipbjq - 6ig8ip)A; B,C,

= B;A,Cy — CiApB,

=B(A.-C)-C(A:-B). (21.4)
Note how simply this identity follows from the contracted epsilon identity. In fact,
the argument is reversible, and the known validity of (2.1.4) establishes a proof of
(2.1.1). Alternatively, (2.1.1) may be established directly by evaluation component by
component.

Further identities may be readily constructed by use of the contracted epsilon iden-
tity. For example:

(AAB)-(CAD) = (eijxA;Bk)(€ipgCpDy)
= €ijk€ipgA; B CpDy
= (85p0kq — 6;q6kp)A; BrCp Dy
= ApCpBy Dy — A¢Dy B, Gy
=(A-C)B-D)—(A-D)B-C). (2.1.5)



