Algorithms for Mutual Exclusion M. Raynal

Translated by
D. Beeson



Algorithms for Mutual Exclusion M. Raynal

Translated by
D. Beeson

The MIT Press
Cambridge, Massachusetts



First MIT Press edition, 1986

Enghsh translation 1986 by NORTH OXFORD ACADEMIC
Publishers Lid.

Original edition pubiished under the title Algorithmique du
parallélisme by Dunod informatique, France. ©' 1984 Bordas,
Paris.

All rights reserved. No part of this book may be reproduced in any
form or by any electronic or mechanical means (including
photocopying, recording or information storage and retrieval)
without permission in writing from the publisher.

Published in Great Britain by

NORTH OXFORD ACADEMIC Publishers Limited
a subsidiary of Kogan Page Limited

120 Pentonville Road

London N1 9JN

Printed in Great Britain

Library of Congress Cataloging in Publication Data
Raynal, M. )
Algorithms for mutual exclusion.

Translation of: Algorithmique du parallclisme.
Bibliography: p.

Includes index.

1. Parallel processing (Electronic computers)

2. Electronic data processing — Distributed processing.
3. Algorithms. 1. Title.

QA76.5.R38513 1986 001.64 85-7916

ISBN 0-262-18119-3



Series Foreword

It is often the case that the periods of rapid evolution in the physical
sciences occur when there is a timely confluence of technological ad-
vances and improved experimental technique. Many physicists, com-
puter scientists and mathematicians have said that such a period of rapid
change is now under way. We are currently undergoing a radical transfor-
mation in the way we view the boundaries of experimental science. It has
become increasingly clear that the use of large-scale computation and
mathematical modeling is now one of the most important tools in the
scientific and engineering laboratory. We have passed the point of view-
ing the computer as a device for tabulating and correlating experimental
data; we now regard it as a primary vehicle for testing theories for which
no practical experimental apparatus can be built. For example, NASA
scientists speak of ‘numerical’ wind tunnels, and physicists experiment
with the large-scale structure of the universe completely by computer
simulation.

The major technological change accompanying this new view of
experimental science is a blossoming of new approaches to computer
architecture and algorithm design. By exploiting the natural parallelism
in scientific applications, new computer designs show the promise of
major advances in processing power. When coupled with the current
biennial doubling of memory capacity, supercomputers are on their way
to becoming the laboratories of much of modern science. In addition, we
are seeing a major trend toward distributing operating systems over a
network of a powerful and perhaps inhomogenous, set of processors.
The idea of being able to make diverse computing resources cooperate on
the solution of a large problem is most exciting to the scientist whose
application is part numerical, part symbolic, manages a massive data
base, and outputs complex graphics. -

In this series we hope to focus on the effect these changes are having on
the design of both scientific and systems software. In particular, we plan
to highlight many major new trends in the algorithms and the associated
programming and software tools that are being driven by the new ad-
vances in computer architecture. Of course, the relation between algo-
rithm design and computer architecture is symbiotic. New views on the
structure of physical processes demand new computational models,



Series foreword

which then drive the design of hew machines. We can expect progress in
this area for many years, as our understanding of the emerging science of
concurrent computation deepens.

As most computer scientists realize, distributed, concurrent hardware
systems represent the future of our interaction with the computers. The
contemporary vision of having a thousand processors and work stations
networked into a system with vast cumulative resources has captivated
both industry and academia. Unfortunately, there is much more to
making this a reality than just hooking the hardware together. Problems
such as the synchronization of distributed concurrency, distribution of
work among processors, and mantaining the integrity of a dynamic,
distributed file system are numerous enough to keep a generation of
scientists busy.

In Algorithms for Mutual Exclusion, Michel Raynal presents a unified
view of the algorithms associated with mutual exclusion in concurrent
systems. He considers both classical shared memory systems as well
as network-based concurrency. The problems and solutions presented
in this book must become part of the working knowledge of anyone
seriously interested in building concurrent systems.

Dennis B. Gannon



Foreword

Constant progress in technology (in particular microprocessors and local
area networks) and in programming methodology (using languages of the Ada
type) is increasingly opening up computer systems as a field of research,
traditionally the preserve of ‘initiates’, to applications designers and
implementors. There are many problems involved in the design of such
systems, such as the management of common memories and memories local
to the various processors, the allocation of physical and virtual resources
defined within the system, and concurrency protection and management. It is
primarily issues of concurrency that are becoming increasingly critical.
Mechanisms for the management of processes and their concurrency must
often be implemented within a genuinely parallel framework, as in
multiprocessor systems with or without common memory.

There is one fundamental problem that stands out from all those involved
in controlling parallelism: mutual exclusion. The issue here is one of ensuring
that it is possible, given a number of parallel programs, to limit their
parallelism at certain points in their execution: as one program enters a
particular zone of code it must exclude the others. It is this question, mutual
exclusion, and its expression in algorithms that we shall consider in this book.
We shall not therefore be concerned with systems design as a ‘whole (the
interested reader should consult works such as ‘Crocus’, ‘Systémes d’exploita-
tion des ordinateurs’, or ‘Cornafion’, ‘Systémes informatiques répartis’) but
with a particular systems component which is becoming increasingly important
in their definition. )

This book is divided into four parts. The first (Chapter 1) introduces the
problems associated with controlling parallelism, following a deliberately
didactic approach; we shall discuss mutual exclusion, deadlock and data
coherence in turn. The second part (Chapters 2 and 3) describes algorithms
(Chapter 2) and statements (Chapter 3) to implement mutual exclusion in a
centralized framework (i.e. via access to a common memory). The third part
(Chapters 4 and 5) deals with distributed algorithms for mutual exclusion.
Chapter 4 will be concerned with solutions based on state variables, and
Chapter $ will describe algorithms based on message communication, the kind
of protocols needed for implementation of exclusion on a network. The final

ix



X Foreword

part (Chapter 6) will consider original software approaches to two control
problems. Although there are some cross-references, chapters can be read
independently of each other.

This book is intended for computer scientists interested in the design,
construction and implementation of centralized or distributed computer
systems, where by ‘computer systems’ we mean systems as different as
operating systems, database systems, document or business management
systems, real-time systems, process control systems, etc. It should be of value
to engineers, who will find that it contains an inventory of algorithms which
are generally scattered through the specialist literature, and are sometimes
difficult to track down. All the algorithms are presented in the same way:
underlying principles and assumptions, the algorithm itself, proof of its valid
operation with respect to expected behaviour, and comments on its structure
and efficiency. From this point of view, the book is a collection of algorithms
on a particular subject, of a kind that is cc imon, for sequential
programming, in works on sorting, automata and fundamental data structure.
The book is also intended for students at Masters level and above, for trainee
engineers in computer science and for researchers who would like to become
more closely acquainted witl. ...c systems design field. Teachers will find that
it contains useful supplementary material, because of the approach and the
analytic point of view adopted, to standard survey or design textbooks, and
could treat it as a collection of exercises on the subject of mutual exclusion.
This is, in fact, a textbook on algorithms for parallel processing.

Any corrections pointed out by readers to errors we may have made will be
gratefully received.

Description language and notation

The language used to describe these algorithms is a ‘Pascal-style’ language.
We shall be essentially concerned with the basic data types: integers, scalars
and Booleans; and traditional control structures: conditions, iterations, etc.,
where the end of a statement is explicitly given mr if ... endif, do ... enddo,
etc. Any possible ambiguities in the interpretation of control structures are
avoided by using the construction begin ... end to delimit processes.
Assignment is shown using the sign «.

An active delay is expressed using loops in which the statement nothing is
used for the activity associated with waiting. The statement wait is used for
waiting whether it is passive or active. In the latter case it is a shorthand form
for which the semantics is:

wait C = while 1 C do nothing enddo
The general format used to describe algorithms is as follows:

< prelude >;
< critical section >;
< postiude >;



Algorithms for mutual exclusion xi

the < prelude > and < postlude > sections make up the protocol that
processes must follow to enter and leave the critical section. Those parts of a
process that do not include the critical section or the protocol make up the
non-critical part.

Set and logical notation will sometimes be used to make writing easier. On
sets we therefore have the following equivalent notations:

forizj,i€l.ndo. = forifrom1toj—1, fromj+1tondo...

wait (Wi € l.n:a) =
wait (a,1 A a,2 A ... A a,n)

We shall use conventional symbols with Boolean expressions:

7 : not

V :or

A : and

v : for all

3 : there exists



Preface

Over the past 20 years, the ‘mutual exclusion phenomenon’ has emerged as
one of the best paradigms of the difficulties associated with parallel or
distributed programming.

It must be stressed at the outset that the implementation of a mutual
exclusion mechanism is a very real task facing every designer of operating
systems.

Even applications programmers must take a certain interest in the question,
because they will have to use services provided by computer systems built
around several processing units, or even several computers linked by a
network. The problem is simple enough to state: what we have to do is to
define fundamental operations that make it possible to resolve conflicts
resulting from several concurrent processes sharing the resources of a
computer system. The whole complex structure of synchronization and
communication between the elements of a parallel or distributed system
depends on the existence of such operations. Algorithms solving this problem
are generally made up of only a dozen or so lines of code and contain only
trivial assignment instructions. Parallelism, however, makes it difficult to
understand their behaviour and to analyse their properties, such as avoidance
of deadlock or fair conflict resolutions.

Given both the practical importance and the inherent difficulty of the
problem, it is not at all surprising that a vast number of works have been pub-
lished on the subject. What Michel Raynal offers here is the most important
results or all this research.

Michel Raynal’s aim is a0t merely to produce a catalogue of the various
algorithms found in scientific journals or conference papers, but to provide us
with a remarkable survey of the field. All the algorithms have been rewritten
in a single language and restructured so as to make them easy to understand
and compare. The presentation of these algorithms systematically stresses the
principles guiding their design, provides arguments to prove their validity and
gives quantitative data allowing their assessment. This is, as far as we know,
a unique book on the subject, opening up a vast field of research which is both
firmly based and highly complex: algorithms for paraliel or distributed
control.

There is no doubt that this is a work that must be regarded as indispensable
in the library of teachers, researcners or engineers working in this field, who
will use it to illustrate a lecture, launch new research or solve specific concrete
problems.

Gérard Roucairol
(University of Paris-Sud)



Contents

Series Foreword

Foreword

Preface

1. The nature of control problems in parallel processing

1.1.

1.2.

1.3.

Processes and their interactions

1.1.1. The process concept

1.1.2. The criterion of mutual awareness

1.1.3. The corresponding criterion of mutual influence

Control problems

1.2.1. Competition between n processes for one resource

1.2.2. Competition between n processes for m resources

1.2.3. Cooperation between n processes by sharing m data
items

1.2.4. Cooperation between n processes by message
communication’

Parallel processes, centralized or distributed

2. The mutual exclusion problem in a centralized framework:
software solutions

2.1,
2.2
2.3.
2.4.
2.5.
2.6.
2.7.

2.8.
2.9.
2.10.

Introduction

Exclusion between two processes: Dekker’s algorithm (1965)
Generalization to n processes: Dijkstra’s algorithm (1965)
Hyman’s incorrect solution (1966)

A fair solution: Knuth’s algorithm (1966)

Another fair solution: De Bruijn’s algorithm (1967)

Further optimization: Eisenberg and MacGuire’s algorithm
(1972)

A didactic approach: Doran and Thomas’s algorithms (1980)
A simple solution: Peterson’s algorithm (1981)

Minimizing the number of values used: Burns’ algorithm
(1981)

12

14

17

-
/

18
22
25
26
28

30
31
33

36



3. The mutual exclusion problem in a centralized framework:

hardware sclutions 39
3.1. Uniprocessor machines 39
3.2. Multiprocessor machines 40
3.2.1. Exchange instruction 41
3.2.2. Test and set instruction 4]
3.2.3. Lock instruction 42
3.2.4. Increment instruction 42
3.2.5. Replace-add instruction 43
3.3. Overview of the semaphore concept 44
3.3.1. General 44
3.3.2. Morris’s algorithm 45
4. The mutual exclusion problem in a distributed framework:
solutions based on state variables 49
4.1. Introduction 49
4.2. The bakery algorithm: Lamport (1974) 50
4.3. Dijkstra’s self-stabilizing algorithm (1974) 52
4.4. An improvement on Lamport (1974): Hehner and
Shyamasundar’s algorithm (1981) 56
4.5. Distributing a centralized algorithm: Kessels’ algorithm
(1982) 59
4.6. Minimizing the number of values used: Peterson’s algorithm
(1983) 61
5. The mutual exclusion problem in a distributed framework:
solutions based on message communication 65
5.1. Introduction 65
5.2. A token on a logical ring, Le Lann’s algorithm (1977) _66
5.3. Distributing a queue: Lamport’s algorithm (1978) 68
5.4. Pursuit of optimality: Ricart and Agrawala’s algorithm
(1981) 72
5.5. Minimizing the number of messages: Carvalho and
Roucairol’s algorithm (1981) 76
5.6. Further optimization: Suzuki and Kasami (1982) or Ricart
and Agrawala (1983) 80
5.7. Another timestamping system: the acceptance threshold 84
6. Two further control problems 87 .
6.1. Introduction 87
6.2. The producer-consumer problem 87
6.3. Another reader-writer problem 90
References 99

Index 105



Chapter 1

The nature of control
problems in parallel
processing

{.1. Processes and their interactions

The need for the control of a set of parallel processes is a consequence of
tbe many problems associated with their management. Responsibility for this
<antrol is left to what is generally called a system: an operating system, a data
base management system, a real time system, etc., depending on the purpose
For which it is constructed.

The concept of a process is used both to express the activity associated with
users of the system and the internal structure of the system itself. A number
of educational works such as Crocus (1975), Shaw (1974), Peterson and
Silberschatz (1983), or Lister (1979), discuss the concept and make its
importance clear, illustrating it by means of examples.

In this chapter we shall start by specifying the interactions within a set of
parallel processes (Section 1.1), after which we shall examine the nature of
problems associated with these interactions (Section 1.2). The search for
solutions to these problems has led to the emergence of algorithms of a new
kind, which we call algorithms for parallel processing. The rest of this work
is devoted to a study of these algorithms from the point of view of mutual
exclusion. '

P.1.1. The process concept

The process concept was first introduced into information systems in order
t.2 highlight the differences between a program as text (written in a certain
{<t nguage) and the execution of this program on a processor. Since then, the
concept has been the subject of much study, leading to its more formal
definition (Horning and Randell 1973). A major development was its
introduction into programming languages (Wulf et al. 1971). This occurred in
response to two factors. First there was the influence of technology. The
concept of a process to express the idea of an activity (and which can therefore
be used to structure the overail activity of a system formed from elementary
activities corresponding to the different parts of the machine) has become an
indispensable tool with the appearance of multiprocessors and computer

1



2 Algorithms for mutual exclusion

networks (whatever their size). If we are to make satisfactory use of such
machines, it is absolutely necessary to be able to master the different activities
taking place within them. _

At the same time, research into programming methodology (structured
programming (Dijkstra 1968, Dahl et al. 1972, Hoare 1972, Brinch Hansen
1973), programming theory, etc., showed that in order to solve a problem it
was necessary to adopt an approach based on successive refinements and
which applied the principle of abstraction, by which we mean that at a given
level we consider only the function offered at that level independently of the
way in which it is implemented. This research led to the introduction into
programming languages of the concepts of processes and abstract types. The
former, as we have already pointed out, is the expression within the language
of the idea of an activity [i.e. of an active cbject (Brinch Hansen 1975, 1978,
Hoare 1978)] ; the latter expresses the idea of data that the program can
manipulate [i.e. the idea of a passive object (Hoare 1974, Liskov et al. 1977,
Wirth 1977)].

In this way processes gradually became familiar objects to all program
designers: a program would no longer always be seen (implicitly) as a single
process, but could be explicitly expressed as a set of processes whatever the
purpose of the program, whether implementing a system (i.e. an interface
between a machine and users) or a particular application.

It is interesting that the concept of a coroutine, which makes it possible to
decompose a program into a certain number of processes of which only one
is active at any given moment, was introduced as early as 1963 to deal with
a particular class of applications: compilers structured as several processes
communicating data to each other in a ‘pipeline’ fashion (Conway 1963). As
at that time the concept of a process did not exist in programming languages,
it was up to the programmer to use both a given language and the tools
provided by the system to assist in the production of software to obtain the
desired behaviour. The introduction of this concept into a language makes it
possible to leave all this work to the compiler; the program designer need then
only concern himself with the expression of a solution to his problem in the
language in question.

In the rest of our discussion we shall assume the principle that a program
should be structured in terms of parallel processes whatever the techniques
used for producing the program: parallel languages or sequential languages
plus production tools. A fundamental question is then immediately raised:
what are the interactions between processes themselves?

1.1.2.. The criterion of mutual awareness

In order to reply to this question we shall consider two criteria. Like any
criteria designed to distinguish absolutely between classes, ours will be to some
extent arbitrary; their value lies in the ‘didactic’ classification that they allow
for the various problems associated with control. The criteria are independent



The nature of control problems in parallel processing 3

of the number of processes n (where n > 2) and of the level at which these
processes are viewed (applications, systems).

The first criterion concerns the extent to which a process is aware of the
environment (fmade up of other processes) with which it interacts:

Criterion 1: What degree of awareness do processes have of each other?
This criterion'allows us to define two classes of processes:
C:: processes unaware of each other
C;: processes aware of each other.
The second class may itself be broken down into two subclasses:

Cz1: processes indirectly aware of each other (e.g. because they use a
shared object)

Cz2: processes explicitly aware of each other(and which-therefore have
communication primitives available to them).

These different degrees of awareness that processes have of each other lead
to different relationships between them:

R;: competition
R>2;: cooperation by sharing

R2;: cooperation by communication.

COMPETITION

In this case the processes are totally unaware of the existence of other
processes: they come into conflict for the use of objects which they must leave
in the same state as they found them, precisely because, as each is unaware of
the existence of the others, if an object is unique, it must be the same for all
of them. The objects involved in such conflicts generally make up what is
known as the system resources. A resource is usually a model of a device
(memory, peripheral, CPU, clock, etc.). The objects are not modified by the
processes but they are indispensable to their operation — their role is
analagous to catalysts in chemistry, as opposed to substances that undergo
transformation; as is the case of catalysts when writing chemical equations,
resources do not generally appear in the statement expressing a process.
Synchronization rules aimed at resolving the problems associated with physical
constraints must be defined so that competition between processes can take
- place without leading to difficulties.

- Comment

Competitive interactions affect all processes executing on a given computer.
To avoid them altogether it is necessary to provide more resources than there



4 Algorithms for mutual exclusion

are processes that might need them at any given time, sc that they can be
allocated in such a way as to avoid conflict. However, this number is unknown
and it is impossible to create physical resourcas dynamicaily. Competitive
relationships are therefore the ‘minimal’ relationships between processes.

COOPERATION BY SHARING

Here, processes interacting with each other know there are other processes,
without being explicitly aware of them. This is what happens, for 2xample,
with variables shared between different processes in the system or a data base:
processes (or transactions) use and update the data base without reference to
other processes, but know that they might be using or updating the same data.

Two read operations, for example, on a single data basc may lead to
different results, depending on whether or not another process has been
writing to the data base. We are no longer dealing with resources that have to
be allocated, but with shared data that the processes may transform. The
processes must cooperate in ensuring that the data base they share is properly
managed. We are dealing here with data-oriented systems, and the control
mechanisms implemented must ensure that the data shared remains coherent.

Comment

Cooperative and competitive interactions between processes are by no
means mutually exclusive. On the contrary: shared data by way of which
processes cooperate with each other are held in resources over which the same
processes will come into conflict. Synchronization rules must therefore not
only sort out conflicts of access but also guarantee the coherence of the data
accessed.

Within the terms of a single problem for which a layered solution has been
proposed using processes, cooperative interactions at any one level may well
correspond to competitive interactions at another level and vice versa. This
contradicts nothing in what we are saying: we are concerned with classifying
types and relationships independently of the level at which we are making our
observations.

COOPERATION BY COMMUNICATION

In the first two cases above, the environment of a process does not contain
the other processes, and interactions between them are always indirect. In the
first case they were sharing devices without knowing it, and in the second they
were sharing values. In this case, however, every process has an environment
that contains names of other processes with which it may explicitly exchange
data. Each process no longer has its own particular aim, but participates in a
common goal which links the whole set of processes. We are dealing here with



“n

The nature of control problems ir. parallel prccessing

what are known as message systems, or systems of communicating processes;
these systems are characterized by the presence of message transmission and
reception primitives. These primitives may be provided by languages
containing the appropriate linguistic constructions in their definitions [e.g.
CSP (Hoare 1978) or Ada (Ichbiah et al. 1983)], they may be constructed by
the programmer in a language that does not itself contain them but which does
make tools available for their construction [e.g. concurrent Pascal (Brinch
and Hansen 1975)], or they may be provided by a system kernel accessible to
applications programs.

Comment

Access primitives and the rules governing their use are affected by thes
distinction we have drawn between cooperation by sharing and by
communication. In cooperation by sharing, processes are unaware of each
other and their cnoperation primitives are the operations read and write
defined on an object, and the access rulée may be formally described by:

(read + write)*

In cooperation by communication, the cooperation primitives provided are
the operations send and receive, and for a pair of communicating processes we
have a communication rule which we can formally describe by:

(send . receive)*

There are cases (languages or systems) where processes are not explicitly
aware of each other and use the send and receive operations all the same;
under such circumstances these operations are addressed to an object of the
port type (Balzer 1971, Mitchell et al. 1978) or of the communication channe'
type (Ambler et al. 1977). As it is not our aim to produce a classification of
languages (the interested reader should consult Le Guernic and Raynal 1950),
we shall only consider the two major cooperation classes (sharing/
communication), and these cases obviously belong in the latter class.

1.1.3. The corresponding criterion of mutual influence

Having used the criterion of mutual awareness to make a first, rough
division of the interactions between processes into two major classes —
competitive and cooperative — we can now attempt to refine our analysis by
asking a second question, which will allow us to come more closely to grips
with the problems posed by these kinds of relations between processes.

Criterion 2: When processes interact competitively or cooperatively, what is
the influence that the behaviour of one will have on the behaviour
of others?



6 Algorithms for mutual exclusion

In the case of competition, there is no exchange of information between
processes — each has its own code and consequently the results of one process
cannot be affected by the actions of others. On the other hand, the behaviour
of one may be affected by the other: if there is competition between two
processes for a single resource, then one will have to wait for the other to finish
before using the resource. Thus, one process will have been slowed down by -
the other. Ultimately, it is possible for a process to be denied access to the
resource indefinitely, in which case it would never terminate, and would give
no result (a situation similar to that of a sequential program trapped in a loop).
With cooperative interactions, a process may directly infuence another’s
results by means of the exchange of information.

In other words, the two cases may be distinguished by the extent to which
the partial correctness of a process is independent of that of the others.

1.2. Control problems

In this section we shall examine the various problems associated with
interactions between processes. To do so, we will use simple models which
make the problems easy to grasp.

1.2.1. Competition between n processes for one resource

Consider the case of n processes in conflict for access to a single non-
sharable resource. As the resource can only be used by a single process at a
time, we shall call it a critical resource and it will be used in a critical section
of the process. It will therefore be necessary to bracket the use of this resource
by a protocol made up of two parts, concerned with acquiring and releasing
the resource, which ensure that the resource R is used by only one process P; :

acquisition protocol written: (R

<_use of the resource

. . . CS
in the critical section >

release protocol )R

This protoco! guarantees what is generally known as mutual exclusion: if,
while the resource is being used by a process P;, another process executes its
acquisition protocol, that protocol must delay it until P; has executed its
release protocol.

Defining protocols is a complex problem — there are a number of pitfalls
to avoid. :

The first pitfall involves what is called deadlock. Consider several processes
all'attempting to enter their critical section to use the resource. As at most only
one process may be in the critical section, one ‘solution’ would be to let none
of them in. This is frequently the case when several people meet before a
doorway (the resource). Imagine that they all follow the protocol: if I am



