Dines Bjarner

Martin Henson‘
. Il FETETEEEET Fr - lllllv“ ‘

: PP T RIS ANNENRSEREE RN e

RN ¥ T

Logics of
Specification Languages .

@ Springer

Dines Bjgrner - Martin C. Henson
Editors

Logics of
Specification Languages

@ Springer

Prof. Emeritus, Dr. Dines Bjgrner
Informatics and Mathematical Modelling
Technical University of Denmark

2800 Kgs. Lyngby

Denmark

bjorner @ gmail.com

Series Editors

Prof. Dr. Wilfried Brauer

Institut fiir Informatik der TUM
Boltzmannstr. 3

85748 Garching, Germany

brauer @informatik.tu-muenchen.de

Prof. Dr. Grzegorz Rozenberg
Leiden Institute of Advanced
Computer Science

University of Leiden

Niels Bohrweg 1

2333 CA Leiden, The Netherlands
rozenber @liacs.nl

ISBN 978-3-540-74106-0

DOI 10.1007/978-3-540-74107-7

Prof. Martin C. Henson
University of Essex

Department of Computer Science
Wivenhoe Park

CO04 3SQ Colchester

United Kingdom
hensm@essex.ac.uk

Prof. Dr. Juraj Hromkovi¢

ETH Zentrum

Department of Computer Science
Swiss Federal Institute of Technology
8092 Ziirich, Switzerland
juraj.hromkovic @inf.ethz.ch

Prof. Dr. Arto Salomaa
Turku Centre of
Computer Science
Lemminkiisenkatu 14 A
20520 Turku, Finland
asalomaa@utu.fi

e-ISBN 978-3-540-74107-7

ACM Computing Classification (1998): F4, F.3,D.1,D.2,D.3

Library of Congress Control Number: 2007936401

Monographs in Theoretical Computer Science. An EATCS Series. ISSN 1431-2654

© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover Design: KiinkelLopka, Heidelberg

Printed on acid-free paper

987654321

springer.com

Monographs in Theoretical Computer Science
An EATCS Series

Editors: W. Brauer J. Hromkovi¢ G. Rozenberg A. Salomaa

On behalf of the European Association
for Theoretical Computer Science (EATCS)

Advisory Board:

G. Ausiello M. Broy C.S. Calude A.Condon
D. Harel J. Hartmanis T. Henzinger T. Leighton
M. Nivat C. Papadimitriou D. Scott

Preface IX

For this we need resort to the proof system of the specification language
— as well as to other means. We consider in this prelude three such means.

Verification

Verification, in general terms, is a wide and inclusive term covering all ap-
proaches which have the aim of establishing that a system meets certain prop-
erties. Even a simple test case demonstrates a, perhaps limited, fact: that in
this case (though maybe no others) a given system achieves (or does not) a
desirable outcome.

More specifically and usually, we use the term verification for more elab-
orate and systematic mathematical techniques for establishing that systems
possess certain properties. Here, the system might be a more-or-less abstract
description (a specification) or a concrete realisation in hardware or software.
The properties may be specific emergent properties of abstract specifications;
they include general statements of, say, liveness, safety and/or termination;
and they cover the correctness of realisations or implementations of given sys-
tem specifications. In all the cases of interest to us, the system description
and the properties to be determined will be couched in a precise formal math-
ematical language. As a consequence, the results of such a verification will be
correspondingly precise and formal.

There are three forms of formal verification that are relevant to the ma-
terial covered in this book and that are, therefore, worth describing in just a -
little more detail.

Inferential Verification

This approach is often simply referred to as verification despite the fact that
other approaches, such as model checking, are also such methods. Here, we
have at our disposal logical principles, a logic or proof system, which correctly
captures the framework within which the system is described. This framework
might be a programming or specification language with a semantics which lays
down, normatively, its meaning. The logical principles will (at the very least)
be sound with respect to that semantics; thus ensuring that any conclusions
drawn will be correct judgements of the language in question.

The logical principles, or fully-fledged logic, will provide means that are
appropriate for reasoning about the techniques and mechanisms that are avail-
able in the language of description. For example, many frameworks provide a
means for describing recursive systems, and appropriate induction principles
are then available for reasoning about such systems.

Inference-based methods of verification allow us to make and support gen-
eral claims about a system. These may demonstrate that an implementation
is always guaranteed to meet its specification; that it always possesses certain
characteristic properties (for example, that it is deadlock-free or maybe that it

X Preface

terminates); or that an abstract specification will always possess certain im-
plicit properties (which will, in turn, be inherited properties of any (correct)
implementation).

Model Checking

This approach to verification (see, for example, [6]) aims to automatically
establish (or provide a counterexample for) a property by direct inspection of
a model of the system in question. The model may be represented (explicitly
or implicitly) by a directed graph whose nodes are states and whose edges
are legitimate state transitions; properties may be expressed in some form of
temporal logic.

Two key issues are finiteness and the potential combinatorial explosion
of the state space. Many techniques have been developed to minimise the
search. In many cases it is not necessary to build the state graph but sim-
ply to represent it symbolically, for example by propositional formulae, and
then, using techniques such as SAT-solvers, to mimic the graph search. Par-
tial order reductions, which remove redundancies (in explicit graphs) arising
from independent interleavings of concurrent events can also be employed to
significantly reduce the size of the search space. It is also possible to simplify
the system, through abstraction, and to investigate the simpler model as a
surrogate for the original system. This, of course, requires that the original
and abstracted systems are related (by refinement) and that the abstracted
system is at least sound (if not complete) with respect to the original: that
properties true of the abstracted system are also true of the original, even if
the abstracted system does not capture all properties of the original.

Model checking has been a spectacularly successful technology by any
measure; the model checker SPIN [23], for example, detected several crucial
errors in the controller for a spacecraft [21]. Other important model checkers
are SMV [31] and FDR, based on the standard failures-divergencies model of
CSP [42].

Formal Testing

Dijkstra, in his ACM Turing Lecture in 1972, famously said: “... program test-
ing can be a very effective way to show the presence of bugs, but is hopelessly
inadequate for showing their absence” [9]. A correct contrast between informal
testing (which might demonstrate a flaw in a system) and a formal verifica-
tion (which might make a general correctness claim) was established by this
remark. More recently, however, it has become clear that there is something
to be gained by combining variations on the general theme of testing with
formal specifications and verifications. Indeed, the failure of a formal test is
a counterezample, which is as standard a mathematical result as could be
wished for (and potentially as valuable too); the problem is that when testing

Preface XI

without a theoretical basis (informal testing), it is often simply unclear what
conclusion can and should be drawn from such a methodology.

A portfolio approach, in which a variety of verification methods are used,
brings benefits. In the case of formal testing, there is an interplay between
test (creation, application and analysis) and system specification: a formal
description of a system is an excellent basis for the generation (possibly auto-
matically) of test cases which, themselves, have precise properties regarding
coverage, correctness and so on. In addition, the creation of adequate test
suites is expensive and time-consuming, not to say repetitious if requirements
and specifications evolve; exploiting the precision implicit in formal specifi-
cation to aid the creation of test suites is a major benefit of formal testing
technologies.

1.3 Integration of Specification Languages

Domains, requirements or software being described, prescribed or designed,
respectively, usually possess properties that cannot be suitably specified in
one language only. Typically a variety, a composition, a “mix” of specifi-
cation notations need be deployed. In addition to, for example, either of
ASM, B, CafeOBJ, CASL, RAISE/RSL, VDM or Z, the specifier may resort
to additionally using one or more (sometimes diagrammatic) notations such
as Petri nets [27,35,37-39], message sequence charts [24-26], live sequence
charts [7,19, 28], statecharts [15-18,20], and/or some textual notations such
as temporal logics (Duration Calculus, TLA+, or LTL — for linear temporal
logic [10,29, 30, 34, 36]).

Using two or more notations, that is, two or more semantics, requires their
integration: that an identifier a in one specification (expressed in one language)
and “the same” identifier (a) in another specification (in another language)
can be semantically related (i.e., that there is a ‘satisfaction relation’).

This issue of integrating formal tools and techniques is currently receiving
high attention as witnessed by many papers and a series of conferences: [1,3,
4,13,41]. The present book will basically not cover integration.!

2 Structure of Book

The book is structured as follows: In the main part, Part II, we introduce,
in alphabetic order, nine chapters on ASM, event-B, CafeOBJ, CASL, DC,
RAISE, TLA*, VDM and Z. Each chapter is freestanding: It has its own list of
references and its own pair of symbol and concept indexes. Part III introduces
just one chapter, Review, in which eight “originators” of respective specifica-
tion languages will comment briefly on the chapter on “that language”.

' TLA" can be said to be an integration of a temporal logic of actions, TLA,
with set-theoretical specification. The RAISE specification language has been
“integrated” with both Duration Calculus and concrete timing.

XII Preface

3 Acknowledgements

Many different kinds of institutions and people must be gratefully acknowl-
edged.

CoLogINET: Dines Bjgrner thanks the 5th EU/IST Framework Programme
(http://www.cordis.lu/fp5/home.html) of the European Commission,
Contract Reference IST-2001-33123: CoLogNET: Network of Excellence in
Computational Logic: http://www.eurice.de/colognet for support.

CAI: Dines Bjorner thanks the editorial board of the Slovak Academy Jour-
nal for giving us the opportunity to publish the papers mentioned on
Pages 4-5.

Stara Lesna: We both thank Dr. Martin Pénicka of the Czech Technical
University in Prague and Prof. Branislav Rovan and Dr. Dusan Guller of
Comenius University in Bratislava, Slovakia for their support in organising
the Summer School mentioned on Pages 5-6.

Book Preparation: We both thank all the contributing authors for their
willingness to provide their contributions and their endurance also during
the latter parts of the editing phase.

Springer: We both thank the editorial board of the EATCS Monographs
in Theoretical Computer Science Series and the Springer editor, Ronan
Nugent, for their support in furthering the aims of this book.

Our Universities: Last, but not least, we gratefully acknowledge our uni-
versities for providing the basis for this work: the University of Essex, UK
and the Technical University of Denmark (DTU).

M o, &M%ﬁm—ﬂ

Martin Henson Dines Bjgrner
University of Essex Technical University of Denmark
Colchester, UK Kgs. Lyngby, Denmark
April 4, 2007 April 4, 2007
References

1. K. Araki, A. Galloway, K. Taguchi, editors. IFM 1999: Integrated Formal Meth-
ods, volume 1945 of Lecture Notes in Computer Science, York, UK, June 1999.
Springer. Proceedings of 1st Intl. Conf. on IFM.

2. Edited by D. Bjgrner, M.C. Henson: Logics of Specification Languages (Springer,
2007)

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.
22.
23.
24.

25.
26.

Preface XIII

E.A. Boiten, J. Derrick, G. Smith, editors. JTFM 2004: Integrated Formal Meth-
ods, volume 2999 of Lecture Notes in Computer Science, London, UK, April 4-7
2004. Springer. Proceedings of 4th Intl. Conf. on IFM.

M.J. Butler, L. Petre, K. Sere, editors. IFM 2002: Integrated Formal Methods,
volume 2335 of Lecture Notes in Computer Science, Turku, Finland, May 15-18
2002. Springer. Proceedings of 3rd Intl. Conf. on IFM.

D. Cansell, D. Méry. The event-B Modelling Method: Concepts and Case Studies,
pages 33-138. Springer, 2007. See [2].

E.M. Clarke, O. Grumberg, D.A. Peled: Model Checking (MIT Press, 2000)
W. Damm, D. Harel: LSCs: Breathing Life into Message Sequence Charts. For-
mal Methods in System Design 19 (2001) pages 45-80

R. Diaconescu. A Methodological Guide to CafeOBJ Logic, pages 139-218.
Springer, 2007. See [2].

E.W. Dijkstra: The Humble Programmer. Communications of the ACM 15, 10
(1972) pages 859-866

B. Dutertre: Complete Proof System for First-Order Interval Temporal Logic.
In: Proceedings of the 10th Annual IEEE Symposium on Logic in Computer
Science (IEEE CS, 1995) pages 3643

J.S. Fitzgerald. The Typed Logic of Partial Functions and the Vienna Develop-
ment Method, pages 427-461. Springer, 2007. See [2].

C. George, A.E. Haxthausen. The Logic of the RAISE Specification Language,
pages 325-375. Springer, 2007. See [2].

W. Grieskamp, T. Santen, B. Stoddart, editors. IFM 2000: Integrated Formal
Methods, volume of Lecture Notes in Computer Science, Schloss Dagstuhl, Ger-
many, November 1-3 2000. Springer. Proceedings of 2nd Intl. Conf. on IFM.
M.R. Hansen. Duration Calculus, pages 277-324. Springer, 2007. See [2].

D. Harel: Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming 8, 3 (1987) pages 231-274

D. Harel: On Visual Formalisms. Communications of the ACM 33, 5 (1988)
D. Harel, E. Gery: Ezecutable Object Modeling with Statecharts. IEEE Computer
30, 7 (1997) pages 31-42

D. Harel, H. Lachover, A. Naamad et al.: STATEMATE: A Working Environ-
ment for the Development of Compler Reactive Systems. Software Engineering
16, 4 (1990) pages 403-414

D. Harel, R. Marelly: Come, Let’s Play — Scenario-Based Programming Using
LSCs and the Play-Engine (Springer, 2003)

D. Harel, A. Naamad: The STATEMATE Semantics of Statecharts. ACM Trans-
actions on Software Engineering and Methodology (TOSEM) 5, 4 (1996) pages
293-333

K. Havelund, M.R. Lowry, J. Penix: Formal Analysis of a Space Craft Controller
Using SPIN. Software Engineering 27, 8 (2001) pages 1000-9999

M.C. Henson, M. Deutsch, S. Reeves. Z Logic and Its Applications, pages 463
565. Springer, 2007. See [2].

G.J. Holzmann: The SPIN Model Checker: Primer and Reference Manual
(Addison-Wesley Professional, 2003)

ITU-T. CCITT Recommendation Z.120: Message Sequence Chart (MSC), 1992.
ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 1996.
ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 1999.

XIV Preface

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

K. Jensen: Coloured Petri Nets, vol 1: Basic Concepts (234 pages + xii), Vol.
2: Analysis Methods (174 pages + x), Vol. 3: Practical Use (265 pages + xi) of
EATCS Monographs in Theoretical Computer Science (Springer—Verlag, Heidel-
berg 1985, revised and corrected second version: 1997)

J. Klose, H. Wittke: An Automata Based Interpretation of Live Sequence
Charts. In: TACAS 2001, ed by T. Margaria, W. Yi (Springer-Verlag, 2001)
pages 512-527

Z. Manna, A. Pnueli: The Temporal Logic of Reactive Systems: Specifications
(Addison-Wesley, 1991)

7. Manna, A. Pnueli: The Temporal Logic of Reactive Systems: Safety (Addison-
Wesley, 1995)

K. McMillan: Symbolic Model Checking (Kluwer, Amsterdam 1993)

S. Merz. The Specification Language TLA', pages 377-426. Springer, 2007.
See [2].

T. Mossakowski, A.E. Haxthausen, D. Sannella, A. Tarlecki. CASL — The Com-
mon Algebraic Specification Language, pages 219-276. Springer, 2007. See [2].
B.C. Moszkowski: Ezecuting Temporal Logic Programs (Cambridge University
Press, UK 1986)

C.A. Petri: Kommunikation mit Automaten (Bonn: Institut fiir Instrumentelle
Mathematik, Schriften des IIM Nr. 2, 1962)

A. Pnueli: The Temporal Logic of Programs. In: Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science (IEEE CS, 1977) pp 46-57
W. Reisig: Petri Nets: An Introduction, vol 4 of EATCS Monographs in Theo-
retical Computer Science (Springer, 1985)

W. Reisig: A Primer in Petri Net Design (Springer, 1992)

W. Reisig: Elements of Distributed Algorithms: Modelling and Analysis with
Petri Nets (Springer, 1998)

W. Reisig. Abstract State Machines for the Classroom, pages 1-32. Springer,
2007. See [2].

J.M. Romijn, G.P. Smith, J.C. van de Pol, editors. IFM 2005: Integrated Formal
Methods, volume 3771 of Lecture Notes in Computer Science, Eindhoven, The
Netherlands, December 2005. Springer. Proceedings of 5th Intl. Conf. on IFM.
A.W. Roscoe: The Theory and Practice of Concurrency (Prentice Hall, 1999)

List of Contributors

Jean-Raymond Abrial
Department of Computer Science
Swiss Fed. Univ. of Technology
Haldeneggsteig 4/Weinbergstrasse
CH-8092 Ziirich

Switzerland
jabrial@inf.ethz.ch

Dines Bjgrner

Informatics

and Mathematical Modelling
Technical University of Denmark
DK-2800 Kgs. Lyngby

Denmark

bjorner@gmail.com

Dominique Cansell

LORIA

Campus scientifique, BP 239
F-54506 Vandceuvre-lés-Nancy
France

cansell@loria.fr

Moshe Deutsch

Hagefen 45

Moshav Liman

22820 Israel
Moshe.Deutsch@Alvarion.com

R&azvan Diaconescu

Inst. of Math. “Simion Stoilow”
PO Box 1-764

Bucharest 014700

Romania
Razvan.Diaconescu@imar.ro

John Fitzgerald

Centre for Software Reliability
School of Computing Science
Newcastle University

Newecastle upon Tyne, NE1 7TRU, UK
John.Fitzgerald@ncl.ac.uk

Kokichi Futatsugi

Japan Adv. Inst. of Sci. & Techn.
1-1 Asahidai, Nomi,

Ishikawa, 923-1292 Japan
kokichi@Qjaist.ac. jp

Chris George

United Nations University

Intl. Inst. for Software Technology
Casa Silva Mendes

Est. do Engenheiro Trigo No. 4
P.O. Box 3058

Macau, China
cwg@iist.unu.edu

XX List of Contributors

Yuri Gurevich

Microsoft Research

One Microsoft Way
Redmond, WA 98052, USA
gurevich@microsoft.com

Michael R. Hansen
Informatics

and Mathematical Modelling
Technical University of Denmark
DK-2800 Kgs. Lyngby

Denmark

mrh@imm.dtu.dk

Klaus Havelund

Lab. for Reliable Software

Jet Propulsion Laboratory (JPL)
4800 Oak Grove Drive

M/S 301-285
Pasadena, CA 91109
USA

havelund@gmail.com

Anne E. Haxthausen
Informatics

and Mathematical Modelling,
Technical University of Denmark
DK-2800 Kgs. Lyngby

Denmark

ah@imm.dtu.dk

Martin C. Henson
Department of Computer Science
University of Essex

Wivenhoe Park

Colchester

Essex CO4 35Q

UK

hensm@essex.ac.uk

CIliff Jones

School of Computing Science
Newcastle University

Newcastle upon Tyne, NE1 TRU
UK

cliff. jones@ncl.ac.uk

Leslie Lamport
Microsoft Corporation
1065 La Avenida
Mountain View, CA 94043
USA

lamport@microsoft.com

Dominique Méry

LORIA

Campus scientifique, BP 239
F-54506 Vandceuvre-lés-Nancy
France
Dominique.Mery@loria.fr

Stephan Merz

INRIA Lorraine

Equipe MOSEL

Batiment B

615, rue du Jardin Botanique
F-54602 Villers-lés-Nancy
France
Stephan.Merz@loria. fr

Till Mossakovski

DFKI Lab Bremen
Robert-Hooke-Str. 5

DE-28359 Bremen

Germany
till@informatik.uni-bremen.de

Peter D. Mosses

Dept of Computer Science
Swansea University
Singleton Park

Swansea SA2 8PP

UK
P.D.Mosses@swansea.ac.uk

Steve Reeves

Computer Science Department
Computing

& Mathematical Sciences
University of Waikato

Private Bag 3105

Hamilton

New Zealand
stever@cs.waikato.ac.nz

Wolfgang Reisig

Institut fiir Informatik

Math.-Nat. Fakultat 1T
Humboldt-Universitat zu Berlin
Unter den Linden 6, DE 10099 Berlin
Germany
reisig@informatik.hu-berlin.de

Donald Sannella

LFCS, School of Informatics
University of Edinburgh
King’s Buildings

Mayfield Road

Edinburgh EH9 3JZ

UK

dts@inf.ed.ac.uk

List of Contributors

Andrzej Tarlecki
Institute of Informatics
Warsaw University

ul. Banacha 2

PL 02-097 Warsaw
Poland
tarlecki@mimuw.edu.pl

Zhou Chaochen

Institute of Software
Chinese Academy of Sciences
P.O. Box 8718

100080 Beijing

China

zcc@Qios.ac.cn

XXI

Contents

Preface s omses smimscosmasurmsme s s Gains §mew e sesmesmy owsmss s VII
1 Specification Languages s .o sssscemmensspianssssssosrsgsmeiss s VII
2 Structure of Book: : s s wssnissimscnins saisnims dmams snimsems e XI
3 Acknowledgements i XII
References XII

Part I Preludium

An Overview

Dines Bjorner and Martin C. HEnsonc.c.ouuuineninan... 3
1 TheBook Historyottt iiiiiiiieiiaennne. 3
2 Formal Specification Languagesc.oiiuano.... 6
3 The Logicso 9
References e 12

Part II The Languages

Abstract State Machines for the Classroom

Wolfgang Reisiy «: csims cassosms smsis smsabans swsas sas sases iassasss 15
I: Intuition and Foundations of ASM 16
1 What Makes ASM so Unique?couitiriinininenann.. 16
2 What Kind of Algorithms Do ASM Cover? 18
3 Pseudocode Programs and Their Semantics 23
IT: The Formal Frameworko, .. 26
4 Signatures and Structuresiiiiiiii . 27
5 Sequential Small-Step ASM Programs........................... 30
6 Properties of Sequential Small-Step ASM Programs............... 35
7 Gurevich’s Theorem 37
IIT: EXtensions.ot e e e e 38
8 Sequential Large-Step ASM Algorithms 38
9 Non-deterministic and Reactive ASM 39

XVI Contents

10 Distributed ASM ... :cicusasiosnssnsnssnions e snsmasmibosssnss 41
11 ASM as a Specification Language............................... 42
12 ConclUSIONot e 43
13 Acknowledgements 44
TRETCTOIICES] s 15750515 1 5 5 75 05 195 0 8 e 1 4 1 w5 5 e i 6 0 o o 44
ASM INAEXES . . o oottt e e e e e e 46
The event-B Modelling Method: Concepts and Case Studies

Dominique Cansell and Dominique Méry. 47
L INErOAUCEION, v o v somimmnine oornine smeimm s b sod s 5616450555 8 5554 s 47
2 The BLanguageouinininii e 50
3 B Models. . ..o 62
4 Sequential Algorithms 77
5 Combining Coordination and Refinement for Sorting 93
6 Spanning-tree Algorithms 112
7 Design of Distributed Algorithms by Refinement 124
8 Conclusion .z:us sasessneisnisiooies Euianies sas@siMmianies 15ids i 142
References 145
Event BIndexes 150

A Methodological Guide to the CafeOBJ Logic

Razvan DiGeotiestls: o as s s eenesnims 40 @@ s s 81 ms £5IEa 0546365 153
1 The CafeOBJ Specification Language 153
2 Data Type Specification................oiiiiiiiiiiiiaa. .. 156
3 Transitions 176
4 Behavioural Specification i 190
5 Institutional Semantics. 220
6 Structured Specifications 225
Acknowledgement 236
REETENCES: . v ssmsms smasmees spamwpsms sEama smswnies Fhoms §5 8800508 236
CafeOBJ Indexesot e e 239
CAsL — the Common Algebraic Specification Language

T. Mossakowski, A. Hazthausen, D. Sannella and A. Tarlecki 241
1 Introduction 241
2 Institutions and Logics 243
3 Many-Sorted Basic Specifications, 244
4 Subsorted Basic Specifications 251
5 CAsSL Language Constructscoiiuiineua... 253
6 Structured Specifications 255
7 Architectural Specifications, 261
8 Refinement 272
9 TOOIS .. e et 274
10 Case Studyooii 275
LI COREIUBION, 5 s mu vweos smiamsmn: sEIEE AN ARINS SRIQO SRS IR ERE FHIM 53 289

References 290

Contents XVII

OAST: TOAEKES v« o ooraim s 55 5505555 5E 565 FME SHEES SEE 85 3Es Smams swswacun 294
Duration Calculus

Michael R. HANSET« oo o e e et e e e e e e e e e e 299
1 Introductionii 301
2 Syntax, Semantics and Proof System.................... 306
3 Extensions of Duration Calculus. 321
4 Decidability, Undecidability and Model Checking 332
5 Some Links to Related Work: : c:s: ospssn: snsnsisinsimssssoasns 334
RETETEIICES. ..« o v ows v ms s o mmie i smedin s 58 5806 S PERE 9WIRb 603 336
DC INAeXes . ..o ittt e e e 345
The Logic of the RAISE Specification Language

Chris George and Anne E. Haxthausen 349
1l IArOdnEHION: ce smsmpumsnmss cmims 505 0RE@EE@amrs@s ems sy §aFs amyss 349
2 The RSL Logic.ssws ineseses cmems sasnnsss susar s a@sms susspsns 352
3 The Axiomatic Semantics: A Logic for Definition 365
4 The RSL Proof System: A Logic for Proof 369
5 0ase StUAY . .. oot 372
6 ConcluSionS.ottt 393
References 395
RAISE JNAEXES i w:smsnsrasnpnssnime soimpiainmi@s 10 Haens 45 B6e s 397
The Specification Language TLA™T

Stephan Merz. 401
1 Imtroduction 401
2 Example: A Simple Resource Allocator............. 402
3 TLA: The Temporal Logic of Actions 409
4 Deductive System Verification in TLA 423
5 Formalized Mathematics: The Added Value of TLA® 430
6 The Resource Allocator Revisited 434
T ConcluSionS.ottt e e 445
References 446
TLAT INEXES oo oottt e e e e e e 448

The Typed Logic of Partial Functions and the Vienna
Development Method

Johw 5. Fitzgerald. . . i wcvvsns susgossiansmsimimusnsssiameamsmos s 453
1 Introduction «:ws sesemiims soiins ms 0508 @i Ghs B M5 o miiEd 5mb o 453
2 The Vienna Development Method 454
3 A Proof Framework for VDM 464
4 The Typed Logic of Partial Functions 467
5 Theories Supporting VDM-SL, 472
6 Three Approaches to Supporting Logicin VDM 477
7 Conclusions and Future Directions. 481
REfEIENCES: « v sonis m s saitma sa 560 88585550 anssonmbomensomemenimeonnsos 482

XVIII Contents

VDM INdexes ::s:mcms casmssasamims smsups@s desms soammsms wusmws <ws 485
Z Logic and Its Applications

M C Henson, M Deutsch and S Reevesocuon... 489
1 IntroduChtiOnot e e e 489
2 Initial Considerationsoiuiuininiiiiiiiiaa. 490
3 The Specification Logic Z¢ i 498
4 Conservative Extensions. 504
5 Bquational LOgIe :vs sxsussmspasmssssmpsmpumsns smsmmsmswmsns sms 509
6 Precondition L.ogic ::uswsssinnisisnims snsnminssmwsmesnsmmseenss 509
7 Operation Refinement. oo, 511
8 Four Equivalent Theories, 518
9 The Non-lifted Totalisation, 526
10 The Strictly-Lifted Totalisation 531
11 Data Refinement (Forward)............... 533
12 Four (Forward) THEOTIES ¢ s :ursmsmevmssmasmins sopmoswsmnssoses 536
13 Three Equivalent Theories..............cooiiiiiiiiiiiiiinen.n. 539
14 The Non-lifted Totalisation underlying Data Refinement 545
15 Data Refinement (Backward) 548
16 Four (Backward) Theoriesuuiiiiiuinniiiiinnennan. 550
17 Four Equivalent Theories............. 552
18 The Non-lifted Totalisation underlying Data Refinement 557
19 DISCUSSION : s wevvsssumimssnimpemsBas s ss: @asnsEaibsass@as s 561
20 Operation Refinement and Monotonicity in the Schema Calculus . .. 564
21 Distributivity Properties of the Chaotic Completion 577
22 ConClUSIONS\ttt e 588
23 Acknowledgements 588
References 589

Part III Postludium

Reviews

Dines Bjorner and Martin Henson (editors) 599
1 Yuri Gurevich: ASM 599
2 Jean-Raymond Abrial: On Bandevent-B 602
3 Kokichi Futatsugi: Formal Methods and CafeOBJ................. 604
4 Peter D. Mosses: A View of the CASL 607
5 Zhou Chaochen: Duration Calculus 609
6 Klaus Havelund: RAISE in Perspective.......................... 611
7 CIliff B. Jones: VDM “Postludium” 614
8 Leslie Lamport: The Specification Language TLA™ 616
9 James C.P. Woodcock: Z Logic and Its Applications 620
10 Closing: Dines Bjgrner and Martin C. Henson 623

