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-Foreword

More than a generation of German-speaking students around the world have worked their
way to an understanding and appreciation of the power and beauty of modern theoreticar
physics — with mathematics, the most fundamental of sciences — using Waler Greiner’s
textbooks as their guide.

The idea of developing a coherent, complete presentation of an entire field of science
in a series of closely related textbooks is not a new one. Many older physicists remember
with real .pleasure their sense of adventure and discovery as they worked their ways
through the classic series by Sommerfeld, by Planck and by Landau and Lifshitz. From
the students’ viewpoint, there are a great many obvious advantages to be gained through
use of consistent notation, logical ordering of topics and coherence of presentation; beyond
this, the complete coverage of the science provides a unique opportunity for the author to
convey his personal enthusiasm and love for his subject.

The present five volume set, Theoretical Physics, is in fact only that part of the
complete set of textbooks developed by Greiner and his students that presents the quantum:
theory. I have long urged hifn to make the remaining volumes on classical mechanics and
dynamics, on electromagnetism, on nuclear and particle physics, and on special topics
available to an English-speaking audience as well, and we can hope for these companion
volumes covering all of theoretical physics some time in the future.

What makes Greiner’s volumes of particular value to the student and professor alike
is their completeness. Greiner avoids the all too common “it follows that...” which conceals
several pages of mathematical manipulation and confounds the student. He does not hesi-
tate to include experimental data to illuminate or illustrate a theoretical point and these
data, like the theoretical content, have been kept up to date and topical through frequent
revision and expansion of the lecture notes upon which these volumes are based.

Moreover, Greiner greatly increases the value of his presentation by including some-
thing like one hundred completely worked examples in each volume. Nothing is of greater
importance to the student than seeing, in detail, how the theoretical concepts and tools
under study are applied to actual problems of interest to a working physicist. And, finally,
Greiner adds brief biographical sketches to each chapter covering the people responsible
for the development of the theoretical ideas and/or the experimental data presented. It
was Auguste Comte (1798-1857) in his Positive Philosophy who noted, “To understand a
science it is necessary to know its history”. This is all too often forgotten in modern physics
teaching and the bridges that Greiner builds to the pioneering figures of our science upon
whose work we build are welcome ones.




Greiner’s lectures, which underlie these volumes, are internationally noted for their
clarity, their completeness and for the effort that he has devoted to making physics an
integral whole; his enthusiasm for his science is contagious and shines through almost
every page. '

These volumes represent only a part of a unique and Herculean effort to make all of
theoretical physics accessible to the interested student. Beyond that, they are of enormous
value to the professional physicist and to all others working with quantum phenomena.
Again and again the reader will find that, after dipping into a particular volume to review
a specific topic, he will end up browsing, caught up by often fascinating new insights and
developments with which he had not previously been familiar.

Having used a number of Greiner’s volumes in their original German in my teaching
and rescarch at Yile, I welcome these new and revised English translations and would
recommend them enthusiastically to anyone searching for a coherent overview of physics.

D. Allan Bromley :
Henry Ford II Professor of Physics
Yale University

New Haven, CT USA



Preface

Theoretical physics has become a many-faceted science. For the young student it is diffi-
cult enough to cope with the overwhelming amount of new scientific material that has to
be learned, let alone obtain an overview of the entre field, which ranges from mechanics
through electrodynamics, quantum mechanics, field theory, nuclear and heavy-ion sci-
ence, statistical mechanics, thermodynamics, and solid-state theory to elementary-particle
physics. And this knowledge should be acquired in just 8-10 semesters,” during which, in
addition, a Diploma or Master’s thesis has to be worked on or examinations prepared for.
All this can be achieved only if the university teachers help to introduce the student to
the new disciplines as early on as possible, in order to create interest and excitement that
in tumn set free essential new energy. Naturally, all inessential material must simply be
eliminated.

At the Johann Wolfgang Goethe University in Frankfurt we therefore confront the stu-
dent with theoretical physics immediately, in the first semester. Theoretical Mechanics I
and I1, Electrodynamics, and Quantum Mechanics I - An Introduction are the basic courses
during the first two years. These lectures are supplemented with many mathematical ex-
planations and much support material. After the fourth semester of studies, graduate work
begins, and Quantum Mechanics II — Symmetries, Statistical Mechanics and Thermody-
namics, Relativistic Quantum Mechanics, Quantum Electrodynamics, the Gauge Theory
of Wcak Interactions, and Quantum Chromodynamics are obligatory. Apart from these
a number of supplementary courscs on special topics are offered, such as Hydrodynam-
ics, Classical Field Theory, Special and General Relativity, Many-Body Theories, Nuclear
Models, Models of Elementary Particles, and Solid-State Theory. Some of them, for ex-
ample the two-semester courses Theoretical Nuclear Physics or Theoretical Solid-State
Physics, are also obligatory.

This volume of lectures deals with the subject of Quannun Electrodynamics. We have
tried to present the subﬁct in a manner which is both interesting to the student and easily
accessible. The main text is therefore accompanied by many cxercises and examples which
have been worked out in great detail. This should make the book useful also for students
wishing to study the subject on their own.

When lecturing on the topic of quantum electrodynamics, one has to choose between
two approaches which are quite distinct. The first is based on the general methods of
quantum ficld theory. Using classical Lagrangian field theory as a starting point one
introduces noncommuting field operators, builds up the Fock space to describe systems
of particles, and introduces techniques to construct and evaluate the scattering matrix and
other physical observables. This program can be realized either by the method of canonical
quantization or by the use of path integrals. The theory of quantum electrodynamics in
this context emerges just as a particular example of the general formalism. In the present

v




volume, however, we do not follow this general but lengthy path; rather we use a “short
cut” which arrives at the same results with less effort, and which has the advantage of
great intuitive appeal. This is the propagator formalism, which was introduced by R.P.
Feynman (and, less well known, by E.C.G. Stiickelberg) and makes heavy use of Green’s
functions to describe the propagation of electrons and photons in space-time.

It is clear that the student of physics has to be familiar with beth approaches to quantum
electrodynamics. (In the German edition of these lectures a special volume is dedicated
to the subject of field quantization.) However, to gain quick access to the fascinating
properties and processes of quantum electrodynamics and to its calculational techniques
the use of the propagator formalism is ideal.

The first chapter of this volume contains an introduction to nonrelativistic propagator
theory and the use of Green’s functions in physics. In the second chapter this is generalized
to the relativistic case, introducing the Stiickelberg-Feynman propagator for electrons and
positrons. This is the basic tool used to develop perturbative QED. The third chapter, which
constitutes the largest part of the book, contains applications of the relativistic propagator
formalism. These range from simple Coulomb scattering of electrons, scattering off ex-
tended nuclei (Rosenbluth’s formula) to electron—electron (Mgller) and electron—positron
(Bhabha) scattering. Also, processes involving the emission or absorption of photons are
treated, for instance, Compton scattering, bremsstrahlung, and electron—positron pair an-
nihilation. The brief fourth chapter gives a summary of the Feynman rules, together with
some notes on units of measurement in electrodynamics and the choice of gauges.

Chapter 5 contains an elementary discussion of renormalization, exemplified by the
calculation of the lowest-order loop graphs of vacuum polarization, self-energy, and the
vertex correction. This leads to a calculation of the anomalous magnetic moment of the
elecron and of the Lamb shift. In Chap. 6 the Bethe-Salpeter equation is introduced,
which describes the relativistic two-particle system.

Chapter 7 should make the reader familiar with the subject of quantum electrodynamics
of strong fields, which has received much interest in the last two decades. The subject of
supercritical electron states and the decay of the neutral vacuum is treated in some detail,
addressing both the mathematical description and the physical implications. Finally, in
the last chapter, the theory of perturbative quantum electrodynamics is extended to the
treatment of spinless charged bosons.

An appendix ccutains some guides to the literature, giving references both to books
which contain more deirils on quantum electrodynamics and to modern treatises on quan-
tum field theory which supplement our presentation. We should mention that in preparing
the first chapters of our lectures we have relied heavily on the textbook Relativistic Quan-
twn Mechanics by J.D. Bjorken and S.D. Drell (McGraw-Hill, New York 1964).

We enjoyed the help of several students and collaborators, in particular Jiirgen Au-
gustin, Volker Blum, Christian Borchert, SnjeZzana Butorac, Christian Derreth, Bruno
Ehrnsperger, Klaus Geiger, Mathias Grabiak, Oliver Graf, Carsten Greiner, Kordt Griepen-
kerl, Christoph Hartnack, Cesar Ionescu, André Jahns, Jens Konopka, Georg Peilert, Jochen
Rau, Wolfgang Renner, Dirk-Hermann Rischke, Jiirgen Schaffner, Alexander Scherdin,
Dietmar Schnabel, Thomas Schonfeld, Stefan Schramm, Eckart Stein, Mario Vidovic, and
Luke Winckeimann.
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We are also grateful to Prof. A. Schifer for his advice. The preparation of the
manuscript was supervised by Dr. Béla Waldhauser and Dipl. Phys. Raffaele Matticllo, to
whom we owe special thanks. The figures were drawn by Mrs. A. Steidl.

The English manuscript was copy edited by Mark Seymour of Springer-Verlag.

Frankfurt am Main, Walter Greiner
March 1992 ) Joachim Reinhard:
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1. Propagators and Scattering Theory

1.1 Introduction

In this course we will deal with quantum electrodynamics (QED), which is one of the most
successful and most accurate theories known in physics. QED is the quantum field theory
of electrons and positrons (the electron—positron field) and photons (the electromagnetic
or radiation field). The theory also applies to the known heavy leptons (¢ and 7) and, in
general, can be used to describe the elecromagnetic interaction of other charged elementary
particles. However, these particles are also subject to nonelectromagnetic forces, i.e. the
strong and the weak interactions. Strongly interacting particles (hadrons) are found to be
composed of other particles, the quarks, so that new degrees of freedom become important
(colour, flavour). It is believed that on this level the strong and weak interactions can be
described by “non-Abelian” gauge theories modelled on QED, which is the prototype of
an “Abelian” gauge theory. These are the theories of quantum chromodynamics (QCD)
for the strong interaction and quantum flavourdynamics for the weak interaction. In this
course we will concentrate purely on the theory of QED in its original form.

There are two approaches to QED. The more formal one relies on a general appara-
tus for the quantization of wave fields; the other, more illustrative, way originates from
Stiickelberg and Feynman, and uses the propagator formalism. Nowadays a student of
physics has to know both, but it is better, both in terms of the physics and teaching, if
it is obvious at an early stage why a formalism was developed and to what it can be
applied. Almost everyone is keen to see as early as possible how different processes are
actually calculated. Feynman’s propagator formalism is the best way to achieve this. Con-
sequently, it will be central to these lectures. References to the less intuitive but more
systematic treatment of QED based on the formalism of quantum ficld theory are given
in the appendix.

For the moment we turn to a more general discussion of scattering processes. The aim
here is to calculate transition probabilities and scattering cross sections in the framework
of Dirac’s theory of electrons and positrons. These calculations will be exact in principle;
practically, however, they will be carried out using perturbation theory, that is an expansion
in terms of small interaction parameters. Because we have to describe the creation and
annihilation processes of electron—-positron pairs, the formalism has to be relativistic from
the beginning.

In Feynman's propagator method, scattering processes are described by means of in-
tegral equations. The guiding idea is, that positrons are to be interpreted as electrons with
negative energy which move in the reverse time direction. This idea was first formulated



Fig. 1.1. Schematic representation
of an experimental arrangement
0 measure a scatlering process.
Collimators D ensure that, at the
position of the detector no inter-
ference occurs between incoming
and scattered waves

by E.C.G. Stueckelberg and was used extensively by R.Feynman.'Feynman was rewarded
with the Nobel price for his formulation of quantum electrodynamics, together with J.
Schwinger and S. Tomonaga in 1965. The latter gave alternative formulations of QED,
that are mutually equivalent. In the following we want to convince ourselves of the power
of Feynman’s formulation of the theory. The more or less heuristic rules obtained in this
way fully agree with the results that can be obtained with much more effort using the
method of quantum field theory.

1.2 The Nonrelativistic Propagator

First it is useful to remember the definition of Green’s functions in nonrelativistic quantum
mechanics. The concepts and methods to be acquired here are then easily ransferred 1o
relativistic quantum mechanics.

We shall mainly consider quantum-mechanical scattering processes in three dimensicns,
where one particle collides with a fixed force field or with another particle. A scattering
process develops according to the scheme outlined in Fig. 1.1. In practice, one arranges by
means of collimators D that the incoming particles are focussed in a well-defined beam.
Such a collimated beam is in general not a2 wave, which extends to infinity, e.g. of the form
exp(ikz), but a superposition of many plane waves with adjacent wave vectors k, i.e. a
wave packet. Nevertheless, for simplicity one often represents the incoming wave packet
by a plane wave. Then one has only to ensure that interference between the incoming
wave packet and the scattered wave is impossible at the position of the detector which is
far removed from the scattering centre. If plane waves are used in calculations, therefore
one has to exclude this interference explicitly.2

In scattering processes we consider wave packets, which develop in time from initial
conditions, which were fixed in the distant past. So in general, one does not consider
stationary eigenstates of energy (i.e. stationary waves). A typical question for a scattering
problem is then: What happens 1o a wave packet that represents a particle in the distant
past and approaches a centre of scattering (a potental or another particle)? What does this
wave look like in the distant future?

/Bde_tcctor

D D
incoming wave
@’ ) ) ) [=
source ~
scattering centre
scattering wave

! See for example R.P. Feynman: Phys. Rev. 76, 749 (1949).

2 For a more detailed discussion of the wave-packet description see for example M.L. Goldberger and KM.
Watson: Collision Theory (Wiley, New York 1964), Chap. 3, or R.G. Newion: Scattering Theory of Waves and
Particles McGraw-Hill, New York 1966), Chap 6.
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Here the generalized Huygens principle helps us to answer these questions. If a wave
function (x,t) is known at a certain time ¢, then its shape at a later time t' can be
deduced by regarding every spatial point z at time ¢ as a source of a spherical wave that
emerges from z. It is plausible to assume that the intensity of the wave, which emerges
from z and arrives at ' at time t', is proportional to the initial exciting wave amplitude
v*(x,t). Let us call the constant of proportionality

iGz' th 2,t) . (1.1)

The generalized Huygens principle can thus be expressed in the following terms:
Pz, t) =1 /d31‘ Gz' tz, iz, t) . t' >t . (1.2)

Here 1(z',t') is the wave that arrives at =’ at time ¢'. The quantity G(z’.t'; =, t) is known
as the Green’s function or propagator. It describes the effect of the wave (z,t), which
was at point z in the past (at ime t < t'), on the wave (z', t'), which is at point z' at
the later time t'. If the Green’s function G(z',t’; z.t) is known, the final physical state
y(z',t"), which develops from a given initial state (a,t), can be calculated using (1.2).
Knowing G therefore solves the complete scattering problem. Or, in other words: Knowing
G is equivalent to the complete solution of Schrodinger’s equation. First, however, we
want to gain some mathematical insight and discuss the various ways of defining Green'’s
{unctions.

1.3 Green’s Function and Propagator

To explain the mathematical concepts it is best to start with Schrédinger’s equation,

in2YE D _ fue.n = (Ho + V(z, 1) w(z,1)
ot 1.3)
2 2
Hy = ~m v,
which describes the interaction of a particle of mass m with a potential source fixed in
space. If we replace m by the reduced mass u = myma /(my + mz), (1.3) remains valid
for the (nonrelativistic) two-body problem. The differential equation (1.3) is of first order
in time, i.e., there are no higher-order time derivatives. Therefore, the first derivative with
respect to time, dv(z,t)/dt, can always be expressed by u(z,t), which is obviously the
meaning of (1.3). From this, in turn, it follows that, if the value of (z,t) is known at
one certain time (e.g. o) and at all spatial points z, i.e. if ¥(z.to) is known, one can
calculate the wave function y(x.t) at any point and any times (at earlier times (¢t < tp)
as well as at later times (f > ;) ). Furthermore, since Schrodinger’s equation is linear in
1, the superposition principle is valid, i.e. solutions can be linearly superposed and the
relation between wave functions at different times (y(z,t) and y(x, to)) has to be linear.
This means that 1(z, t) has to satisfy a linear homogenous integral equation of the form

W&t =i / Pz G bz, O 1) (1.4)

3
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where the integration extends over the whole space. This relation also defines the func-
tion G, which is called the Green's function corresponding to the Hamiltonian H . It is
important to note that relation (1.4) - in contrast to (1.2) — makes no difference between
a propagation of ¢ forward in time (¢ > t) or backward in tdme (¢’ < t). However,
in most cases it is desirable to distinguish clearly between these two cases. For forward
propagation one therefore defines the retarded Green’s function or propagator by

Fig. 1.2, The unit step function

. _[G&' .tz t) for t'>t
G\t 2, 1) {0 oLy (1.5
It is now useful to introduce the step function O(r) (Fig. 1.2):
_f1 for >0
T On= {0 for r<0 ° (1.6)

With this the causal evolution of y(z',t') from (z,t), with ¢’ > ¢, can be formulated as
follows:

o(t' - typ(z',t") = i/d3x Gt =, y(x,t) . (17D

For t' < t this relation is trivial because of (1.5) and (1.6), which together give 0 = 0, and
for ¢’ > t it is identical with (1.4). Equation {1.7) ensures that the original wave packet
¥(z, t) develops into a later (', ¢") with ¢’ > t. Hence there exists a causal connection
between ¥(z’,t") and y(x,t). We will retumn to this question in Sect. 1.6 and Exercise
1.1. If one wants to describe the evolution backwards in time, it is useful to introduce the
advanced Green’s function G~ :

(a4l _ [ -G th2,t) for t <t
G @tz ={ for t'>t

Then the determination of the former wave packet ¥(z',t’) from the present one ¥)(z, t),
with ¢’ < t, proceeds according to the relation

(1.8)

Ot — Y, ) = —i / LGtz (=, ) (1.9)

which is again trivial for t' > t because of (1.6) and (1.8) and is identical with (1.4) for
<t

£ XE R C 1S . 0

1.1 Properties of G

Problem. Show the validity of the following relations: x G~ (x1,t1; 2, 1)

aift >t >t

Gzt z,t) =i/d3:nG*(z:’,t’;::1,h)
X @(Z],t];z,t) ’

bif ' <ty < t:

G ('t z,t)= —i/d3x1G‘(z’,t'; 1, 1)

b

c)if t > #:
53(2:—-:l:')=‘/d3.’nc¢(2:’,t;t1,t1)
xG”(zi,tl;z,t) ,

d)yift < #;:




63(:: ~-2')= /dszlG—(zz',t; zy, 1)

x G*{z1,t1; 2, 1)
Solution. a) The first two assertions (a) and (b) are read-
ily understood because of relatons (1.7) and (1.9), respec-

tively. If we consider the propagation of an arbitrary wave
packet y(z, 1) into the future, we are able to conclude that

W', 1) =i / LG sz, D, ) (1)

if ¢' > t. y(x,t) can be chosen at any arbitrary time ¢.
Thus we can also insert an intermediate step:

¢v(z’,t’)=i/d3x1@+(z',t': z1, t)(z1, 1)
=i/d3:rlG+(=',t';tl,tl)
xi/fo*(zx,tn;z,t)lﬁ(t,t)

=i/d31:i/d3:r1G+(z',t';1:1,t1)
X G*(z1,t; x,t) (=, 1) 2

If we compare relations (1) and (2), assertion (a) follows.
b) The proof of case (b) proceeds along simiicr lines:

v(z',t") = —i/d31: G~ ('t z, thi(z,t) 3)

ife'<t. Again we insert an intermediate step:

' t) = —i/d3x1G'(=:',t’;zn,tn)w(zl,tn)
- _i/fle'(z',t';zl,tt)
X (—i)/dsx G~ (z1,t; =, (=, t)

= -—i/ds.t (—i)/dszlG-(x',t'; 21,!])
X G (z1,t; 2, D)Y(x, 1) 4)

if t' < t; < t. Comparing relations (3) and (4) assertion
(b) follows.

¢) The proof of relations (c) and (d) proceeds similarly.
We first write

W' D =i / P21 G ('t 21, )1, 1)
= i/d3;z:1G’(z',t; 2].,t1)
x (-i)/d’z G (z1,h; z, )¢z, b)

= /d:’z/d:’z,G"(z',t;zx,tx)

x G~ (21, t; 2, )P(=2,t) &}

if t > t; . For a constant time ¢, y¥(x, t) can be expressed
with the help of the 6 function as

i\ = [ Pasle iz ®)
The comparison of relations (5) and (6) yields assertion
(C)ld) The proof of (c) can be exactly copied
¥ 0= =i [ EnG @ ta, 0w, 0)
= /d3:/d31:1G_(a:’,t;zl,t1)
x Gz, t1; 2, (=, 1) M

if t < t; . Comparing (7) with the integral representation
(6) proves (d).



