\
Q

‘Stre




" Information Handling
for the ZX Spectrum

C.A. STREET

McGRAW-HILL Book Company (UK) Limited

London - New York - St Louis - San Francisco - Auckland - Bogota
Guatemala - Hamburg - Johannesburg - Lisbon - Madrid

Mexico - Montreal - New Delhi - Panama - Paris - San Juan - Sao
Paulo - Singapor= - Sydney - Tokyo - Toronto



Published by
McGRAW-HILL Book Company (UK) Limited
MAIDENHEAD - BERKSHIRE - ENGLAND

British Library Cataloguing in Publication Data

Street, C.A.
Information handling for the ZX Spectrum.
1. Sinclair ZX Spectrum (computer)
I. Title :
001.64'04 QA76.8.5625

ISBN 0-07-084707-X

Library of Congress Cataloging in Publication Data

Street, C.A.
Information handling for the ZX Spectrum.

1. Sinclair ZX Spectrum (Computer)—Programming. 2. Basic (Computer program language) 3. File
organization (Computer science) L. Title. IL. Title: Information handlig for the Z.X. Spectrum.
QAT76.8.5627S84 1983 001.64’'25 83-16252

ISBN 0-07-084707-X

Copyright © 1983 McGraw-Hill Book Company (UK) Limited). All rights
reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without prior permission of
McGraw-Hill Book Company (UK) Limited, or of the original copyright
holder.

12345CUP 8543

PRINTED AND BOUND IN GREAT BRITAIN BY CAMBRIDGE UNIVERSITY
PRESS



INFORMATION HANDLING
FOR THE ZX SPECTRUM




PREFACE

This book is intended for those who would like to make use of their
computers in small-scale, but useful ways. Probably the most
common application for large computers is that of storing, on a large
scale, information of all types— from birth onwards our personal
details, financial status, occupations, and other facts are recorded
and used in large computer systems. By and large this activity
improves the quality of life for the individual and lessens the burden
of work (particularly its more routine aspects) in large public and
private bodies. Suitably controlled and supervised, computerized
data processing ‘oils the wheels’ of modern life with fewer sinister
implications than are attached to many other twentieth century
inventions.

Although the personal computer is slower and has less storage
capacity than its larger relatives, it can still provide the same
accuracy and convenience for home users.  have tried to provide two
useful things in this volume. Firstly, the programs are working
constructions which can be entered from keyboard or tape and used
immediately. Inthe later partofthe book, they have been designed so
that parts of one may be used in another; thus once the various
processes have been understood, the reader should be able to use
modules from two or more individual programs in order to construct
individually tailored systems to meet his own special needs. To the
‘'same end, I have endeavoured to make each module as flexible as
possible, so changing a program designed for the storage of names
and addresses to one for, say, a stamp catalogue should be a quick and
easy operation.

Secondly, I have tried to use a‘structured’ approach toplanningthe
programs. The essence of this method is that the problem is thought
through carefully before any coding—the act of writing BASIC
statements themselves—is attempted. Having analysed the prob-
lem, a description of its methods is written in ‘pseudo-code’ which
then leads on to the final BASIC version. The result should be
programs which are easier to amend and understand. If the program
is read alongside the pseudo-code description (the principles of this
are introduced in the first chapter) its workings should be clear. I
hope my readers will agree. The book is not, however, another text on
structured programming— after the briefintroduction in Chapter1,
it is used throughout the book in the course of writing programs
which work and are useful. I hope that by writing in this manner I
will have avoided the trap of artificial programs for the sake of

vii



theoretically correct programming practice. T have learnt most of my
programming skills in the course of trying to do something useful
with a machine, in many cases by following and adapting programs
produced by experts. It is my hope that my readers will gain similar
benefits from working with the programs in this book. For maximum
usefulness, a 48K ZX Spectrum is needed, but muchis to be gained by
adapting programs from one dialect of BASIC to another—a time
consuming, but very instructive practice.

In Chapter 21 have tried to tackle what is, to me, the most import-
ant and difficult part of the BASIC language. The IF ... THEN
construct is apparently simple, but has hidden traps, and I hope that
a careful reading will help readers to recognize and avoid the pitfalls
which await them. Thereafter the programs focus on the main objec-
tive: storing, retrieving, sorting and amending information in a
standard 48K ZX Spectrum, using cassette tape for permanent
storage. Many of the methods are related to those used in PROFILE, a
file-handling program also published by McGraw-Hill, but a much
larger book would be needed to give the full story of PROFILE, which
wasdesigned as aworking tool, using some programming techniques
beyond the scope of this book.

Iwould not, of course, claim that the programs are perfect, indeed I
have deliberately refrained from using some of the features which
can enliven any program. Colour and sound, for example, are used
sparsely, butthiswasacalculated decision made to allow attention to
be focused on the essentials of data-handling. A well constructed
program can always have ‘bells and whistles’ added as an after-
thought, but if the design starts with such matters, it may well not
perform its basic functions efficiently.

Finally, I would like to thank all whose patient help has contri-
buted so much. In particular I must mention Graham Bishop for his
kind encouragement and, of course, my wife Irene without whose
support neither PROFILE nor this book would have been possible.

viii



CONTENTS

Preface

Chapter 1

PROGRAMMING AND PLANNING
1.1 Speed

1.2 Structured programming
1.3 Elements of pseudo-code
1.4 Case

1.5 Loops

1.6 Craps—a dice game

Ch

2.1 Branching
2.2 Branching with Boolean expressions
2.3 Strings

Chapter 3

FILES INDEXING AND SEARCHING
3.1 Storage

3.2 Never type RUN!

Data file structure

Notepad

Indexing

Searching

Searching and analysing text files
String search

Improved string search

10 Sentence analysis

3.11 Letter count

3.12 Natural enquiry system

Chapter 4

OO T W

3.
3.
3.
3.
3.
3.
3.
3.

COLLECTING, CHECKING, AND ORGANIZING

4.1 Input

4.2 Address book

4.3 A full screen editor
4.4 Checking data

4.5 Dateval

4.6 Numval

4.7 Storing data

4.8 Tellist

vii

o O 00 TT i WO

19
20

22
22
23
28
28
32
35
37
38
38
39
41

46
48
54
57
60
60
63
68



Chapter 5
COMPARING AND SORTING

5.1
5.2
5.3
5.4
5.5

Comparison
Sorting
Searching through sorted arrays

The Shell-Metzner sort
Index files

Chapter 6
KEEPING YOUR FILES

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

The design

Namelist

The linked list

Linked list with alphabetic pointers
Inserting a record

Other procedures

Variable lists

Stocklist

Where now?

APPENDIX

74
76

90
94

95
96
96
105
106
108
108
113
123



PROGRAMMING
AND PLANNING

Programming a computer is a fulfilling activity. It presents a direct
and compulsive challenge to our powers of organization, persever-
ance, and reasoning. The home computer is, of course, a many-
faceted tool— with the right software it can entertain, inform, and
act as an electronic filing cabinet—but it can also engage our wits
and stamina in an attempt to make it carry out our particular will.
This book is intended to help those who have learnt the elements of
programming in BASIC and want to progressto alevel at which their
projects can be completed more quickly, work more efficiently, and
are easier to amend if circumstances change.

Everyone has to begin by mastering the vocabulary of the
computer’slanguage and— more challenging— its syntax, or rules of
grammar. One ofthe glories of Sinclair BASIC is its separation of the
processes of syntax checking(carried outassoon asthe ENTER key is
pressed) and execution (after RUN). The ‘syntax error’ message
which always manages to appear at the most interesting point on
other machines during the run of a program is replaced by a friendly,
ifinsistent, question mark which appearsassoonasalineof BASIC is
completed. I hope my readers will not mind if I digress further in
praise of the version of BASIC used in this book— some of the points I
make have been essential to the construction of the programs found
here and to the associated PROFILE project. I hope the programs will
be useful in at least two ways: they are meant to show some of the
techniques for efficient storage and recall of data, but as tested and
working programs they should, with the minimum of adaptation, fit
many needs, particularly of the ‘filing cabinet’ variety.

A second unique feature of Spectrum BASIC is the ‘keyword’ entry
system— ideal for the young and those whose typing, like my own,
has never progressed far beyond the two-finger stage. More import-
ant, perhaps, isthe fact that the keyboard becomes a dictionary of the
language, albeit without definitions, so the irritating problem of
having to look through the manual for a function which you know is
somewhere (if only . . .) is almost eliminated. A by-product of key-
. wordentryisthat words are separated properly with spaces, asinany
other piece of printed work. Readers of computer magazines will

1



know how confusing the condensed versions of programs sometimes
found there can be:

10FORK=STORE:PRINTED +K(S) :NEXTK
instead of
10 FOR k=s TO re: PRINT ed+k(s) : NEXT k

in which not only does the separation between words help, but also
the convention of

UPPER CASE for BASIC words
lower case for everything else

which I shall use throughout this book, with one exception. The only
time for departure from this rule is when entering text between
inverted commas in strings and PRINT statements, where capital
letters are frequently desirable. The second rule used in producing
versions of my programs for this book was also adopted for the sake of
legibility. Spaces have been inserted wherever necessary in order to
make them as easy to read and copy as possible. In particular,
multiple statements after aline number have been separated so as to
contain each statement on one screen line and to avoid the awkward-
ness of having words split between one line and the next. There is no
reason for this other than for legibility; indeed, the programs run a
little slower in expanded format, so if you copy them you may well
wish to type in one continuous stream. In the later programs this
would certainly be desirable as the extra spaces consume internal
memory which is also used for the storage of data. All the programs
have been run and tested on a Spectrum and printed out by the
publishers on a dot-matrix printer direct from the working versions.
If the reader wishes to save the trouble of typing the programs in
himself (I intend no discrimination against programmers of the
female sex), a cassette ofall the major worksin thisbook isobtainable
direct from the publishers.

There are two other features of Sinclair BASIC which make it, in
my view, the best current version of the beginner’s language that I
have used— which is not to say that it could not be improved still
further. Neither aspect is immediately apparent, but with continued
usage both have proved enormously useful. All dialects of the
language store the values of variables in memory while a program is
being run, but the Sinclair version is friendly to the extent that when
a program is altered the values are not lost but simply, like the
program, shifted around alittleinternally. Ofcourse, ifyou then type
RUN they are destroyed forever, but if GOTO is used instead, the old

2



values are retained and reused. For many applications this matters
little, but when working with a mass of information which may have
taken along time to enter, this featureis invaluable. It extends to the
storage of programs on cassette tape (SAVE outputs the program
lines and variables to tape) and so, provided one is careful, important
data need never be lost. This is particularly convenient when pro-
grams are being developed—data entered for test purposes can be
kept and used over and over again almost as easily as if stored on a
disc system.

The last characteristic of Sinclair BASIC I must praise is the way
in which it has been kept as free as possible from rules which in
essence say ‘Don’t’. As long as a statement has passed the test of the
syntax checker, this dialect will do its utmost to produce what it
thinks the user wants without taking too much for granted. Some-
times this will mean going to ridiculous lengths— try the following
program to see what I mean:

10 LET f$ = "VALS$ £$”: PRINT VALS$ f$

Themachinefillsitsentireinternal memory while trying to work out
this impossible problem! (It is a circular definition— ‘black is black,
what is black?’) As an aside, although many reviewers have found
little use for the VALS$ function, I consider it one of the most elegant
artefactsof thelittle interpreter and will show how it canbe usedina
later chapter.

1.1 Speed

There can be little argument that the Sinclair BASIC interpreter
(the program which translates a set of BASIC statements into
machine code and then carries out the resulting instructions) is slow
compared with many others. For me, this is not a disturbing fact—- it
follows in part as a necessary consequence of some of the virtues
described above. Other interpreters, for example, keep track of their
variables by using sophisticated sets of pointers which cannot be
updated every time a change to the program forces the variables to
move internally. Pointer systems are very rapid, but relatively
inflexible for certain purposes. Speed is nonetheless very useful at
certain times in a program and I shall try to show how the necessary
performance can be obtained when it is important. A few general
rules might now be of use however:

1. Keep the number of GOSUBs and GOTOs to a minimum. Every
time the interpreter meets one it has to search for the target,
which takes time. This rule is particularly important if the GO

3



statement is in the middle of a repetitive process, where a delay of
a few milliseconds each time the statement is met has to be
multiplied by the number of times the process is repeated. This is
an excellent rule for another reason. Programs with many jumps
soon become difficult to understand because of their apparent
complexity. I shall show in Chapter 2 how, in many cases, GO
statements can be avoided altogether.

2. Ifthe targets for GO statements can be placed near the beginning
of a program, execution will be faster. This particularly applies to
those line numbers which will be used frequently by other parts of
the program.

3. Just as line numbers have to be found when required, so do vari-
able values. If a number does not change during the execution of a
program, it will help in terms of speed, if not memory usage, to use
it as a number rather than a variable. For instance:

10 LETz=90

20 IFp >zTHEN. ..
is marginally slower than

20 IFp >Q@ THEN . ..
although, if the number zero is used a lot in the program, the first
version will use less memory.

4. Plan programs carefully and try to break them down as far as
possible into self-contained modules. A program which is allowed
to grow like Topsy will most likely be an inefficient, rambling
affair which duplicates some processes and does others in a less
than purposeful (and therefore slow) manner.

1.2 Structured programming

Few issues of the popular computer magazines are allowed to pass
without at least a mention of this topic, and rightly so, for within a
short time of learning a computer language it dawns on most people
that the process of drawing up the overall plan of a program is at least
as important as the ability to code individual lines of BASIC.
Amateur computer users have to be their own architects, draughts-
men, and bricklayers when building programs, and a structured
approach is only an extension of sound practice. In many cases the
early work is best done using a generalized language which is
variously referred to as program design language, or pseudo-code.
Which name you choose matterslittle, because what it amounts to is
a ‘half-way house’ between ordinary language and almost any
computer language of your choosing. In the rest of this chapter I shall
introduce the main ideas of pseudo-code (I choose that name only
because it is shorter), which will be used from time to time in the rest

4



of the book to design programs and parts thereof. Many purists would
like a very close match between pseudo-code descriptions of pro-
grams and the actual program itself. Very few, if any, versions of
BASIC allow this, most being like the curate’s egg— good in parts.
The Spectrum language is no exception and we shall find that there
are two distinct jobs to do: first translate our thoughts into a pseudo-
code description and then translate the result into BASIC.

1.3 Elements of pseudo-code

Idonotintend to place myselfin a strait-jacket in defining the type of
pseudo-code descriptions I shall use in this book. It is enough to be
faced with the strict rules of BASIC, and since we want a bridge
between English and computerlanguage which is for our use (not the
computer’s) I intend to be as flexible as possible. No one should feel
constrained to follow my example— pseudo-code is a philosophy of
planning, not another unyielding discipline.

BASIC words and functions— LET, THEN, AND, INT, .. .—will
be freely used and are written in upper case. Variable names will be
written in lower case, using adollar sign where appropriate, but with
no restriction on the number of characters involved. I shall often use
underscore characterstojoin theindividual wordsin a variable name
together. The word PROC (for procedure) and a brief description will
be used to head each section of code. For example:

PROC Electricity charge

/ / unit_chge in pence, fix_chge in pounds //

LET units_used = present_mter_read— prev_mter_read
LET cost_units = INT (units_used * unit_chge ) / 100
LET total = fix chge + cost_units

ENDPROC

The section between the double °/’ characters is a comment, and
these will be included wherever they might seem to be useful. Note
one of the most fundamental ideas in pseudo-code— where there is a
beginning (PROC), there is also an end (ENDPROC). The same
principle is used in the next example, which assumes a tax system in
which abasicrate of 30 percentislevied on the first£15 000 of taxable
income (the remainder after allowances have been subtracted from
the total salary) and a higher rate of 50 per cent on anything above
that.

PROC Tax calculation
/ | Assume allowances have already been calculated //



LET tax to_pay = 0
LET taxable = salary — allows
IF taxable > 15009 THEN
LET taxable_high = taxable — 15000
LET tax to_pay = taxable_high * .5
LET taxable = 15000
ENDIF
LET tax to_pay = tax to_pay + taxable * .30
ENDPROC

Note the ENDIF which, together with identation, shows clearly
the processes which have to be carried out if the condition is met and
where to resume if not. In a BASIC program, this is best effected
using a multiple statement line (line 130, Fig. 1.1) without which it
becomes difficult to avoid using GOTO statements. Apart from any
considerations of speed, these make the program less easy to read.
Note that, in line 149, it is important to have the variable txp on both
sides of the assignment, in order to cater for cases where the higher
rate of calculation has been carried out.

16 INFUT "saly"isaly
2o INFUT "alls"salls
16960 REM taxcal c  #%%#56% %5555 %55
119 LET tup=a
126 LET txbl=saly-alls
136 IF txbl 15066 THEN
LET teblhi=tubhl-15000:
LET tup=txblhi*d, 5
LET tubl=15000
4o LET tup=txp+tabl*o.3
156 FRINT "Tax to pay is "stup
Figure 1.1

When an IF statement has to be used, the option of using an ELSE
clause is tremendously valuable:

IF t$="Monday” THEN LET j$="Washing” ELSE LET ;$="
Ironing”

Spectrum BASIC does not have this facility so we have to simply
work around the problem. Sometimes this means using a GOTO
statement:

190 IF d$ = "Monday” THEN LET j$ = "Washing” : GOTO 30
29 LET j$="Ironing”
30 ...



but GOTO can often be avoided by using the ‘logical’ or Boolean
functions (AND, OR, NOT) which I shall discuss at greater length in
Chapter 2.

10 LET j$ = ("Washing” AND d$= "Monday”) +
("Ironing” AND d$ <> "Monday")

In pseudo-code, I prefer to use indentation for ELSE clauses, as
shown in the next example, which calculates a grade for a student
from the marks gained in two assignments. The rules for doing so are
stated in the comment lines at the beginning of the program. Even
though ELSE clauses cannot be translated directly into Sinclair
BASIC, they are most helpful in clarifying the way in which a process
works.

PROC Assessment results
/] Studentisreferred ifeither mark isless than 49% or average less
than 50% //
/] Pass for an average of 5% or more, and neither mark lowerthan
40% //
// Merit for 65% or greater //
/| Assume we have got two percentages, markl and mark2//
IF markl < 40 OR mark2 < 49 THEN
LET result$ = "Referred”
ELSE
LET avge = (markl + mark2) /2
IF avge < 50 THEN
LET result$ = "Referred”
ELSE
IF avge >= 65 THEN
LET result$ = "Merit”
ELSE
LET result$ = "Pass”
ENDIF
ENDIF
ENDIF
ENDPROC

The useofasingletargetline (209, Fig.1.2) and the variable r$ makes
the BASIC program (Fig. 1.2) much less complicated than it might
otherwise have been. Ifthe process of deciding an outcome is lengthy

and the target line far away, some gain in readability can be made by
using:

30 LET printline = 1200



and
110 .. .: GOTO printline, etc.
lér INFUT "marks"iml, md
1

199 REM Decide r D EERREES
119 I[F ml<4o OR i THEN

" GO TO Zoo

1860 LET ré="Fass"
“FINT "Result is "irs

1.4 Case

In the preceding example, a decision between three possible grades
was made using three IF statements. The CASE statement in
pseudo-code allows a neat description of situations where many
possibilities exist and allows us to avoid programs which have so
many indentations that they begin to look like extremely agile
snakes! It is usually reserved for dilemmas in which the course of
action is determined by the value of one variable, as when throwing a
die, but it is worth reminding ourselves that pseudo-code is an aid to
good planning, not a fixed set of rules demanding strict adherence.
The notation for this is shown below.

/] Day of birth denoted by b$ //
CASE of b$
b$ = "Monday”
LET c$ = "fair of face”
b$ = "Tuesday”
LET c$ = "full of grace”
b$ = "Wednesday”
LET c$ = "full of woe”
b$ = "Thursday”
LET c$ = "far to go”
b$ = "Friday”
LET c$ = "loving and giving”
b$ = "Saturday”
LET c¢$ = "works hard for a living”



b$ = "Sabbath day”
LET c$ = "bonny and blythe and good and gay”
ENDCASE

Only one of the alternatives is to take effect. A blanket final option
is allowable if none of the specific cases are met, and for this we use
OTHERWISE. The use of this will be shown in the final program of
this chapter, which is a simulation of the dice game, craps.

1.5 Loops

Almost all useful programs involve some sort of looping process. The
statements inside a loop are repeated until some condition is satis-
fied, whereupon the program exits and (usually) carries on to the
next statement after the loop. The most often used programming
technique for looping is the FOR ... NEXT method, but this is
limiting, since the number of repetitions has to be given in the first
statement and on many occasions it is simply not possible to predict
in advance how many times the process will be repeated. I shall use
two pseudo-code constructions to describe loops.

1. WHILE <condition>
(statements to be repeated)
ENDWHILE
2. REPEAT
(statements to be repeated)
ENDREPEAT ON <condition >

The only real difference between the two is the position of the
condition to be tested. In the first it is at the beginning so the
bracketed statements are not executed at all unless the condition is
true atthe start. The second alwaysresults in the loop being executed
at least once because the condition is not tested until the very end. In
many situations either can be used, most programmers having a
preference for one type orthe other. FOR. . . NEXT loopscan usually
be described either way; for example:

10 LET sum =

20 FORc=1TO 8

30 LET sum = sum + ¢

40 NEXT c

50 PRINT "Total of first eight integers is ”; sum



