icroprocessors

’LawrenCe E. Getgen



Designing with
Microprocessors

Lawrence E. Getgen

California State University, Chico

SR AN

SCIENCE RESEARCH ASSOCIATES, INC.
Chicago, Henley-on-Thames, Sidney, Toronto

A Subsidiary of IBM



Acquisition Editor Alan W. Lowe

Project Editors Richard Myers
Dan Kirklin
Compositor The Clarinda Company
Text Designer Allen Carr
Hlustrator Allen Carr and House of Graphics
Cover Designer Allen Carr

Library of Congress Cataloging in Publication Data

Getgen, Lawrence E., 1924-
Designing with microprocessors.

Includes index.

1. Microprocessors. 2. Microprocessors—Programming.
I. Title.
TK7895.M5G48 1985 001.64'2 85-2033
ISBN 0-574-21600-6

Copyright © Science Research Associates, Inc. 1985.
All rights reserved. No part of this publication

may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise,
without the prior written permission of

Science Research Associates, Inc.

ISBN 0-574-21600-6

Printed in the United States of America

109 8 76 5 4 3 9 1



Preface

This text on microprocessor programming, hardware, and applications
is aimed at engineering and computer-science students who will ulti-
mately apply this material in the industrial environment. Both students
who have had an introduction to computer programming and the more
naive industrial development groups are likely to find the techniques in-
cluded here different from what they expect.

There is a strong—almost overwhelming—Dbelief among engineers that
much program documentation and related documentation standards such
as those given in this text are unnecessary. The individual may bypass
these steps from laziness or indifference. The industrial concern does the
same, because software costs money, and it believes that eliminating this
unnecessary paperwork will save a considerable sum.

The usual sequence of events for both individual programmers and in-
dustrial concerns is to try the “easy way” first. This is “scene one.” They
provide documentation consisting, in total, of an Assembly listing. There
is no specification for the program and no program description; the soft-
ware design is nil; GO TOs are rampant; modules are nonexistent; and a
program library is unheard of.

“Scene two” begins when bugs are found in the program, the user
wants the operating features to be modified, and the original program-
mers have moved to higher paying positions. At this stage, the person
stuck with the program maintenance becomes a convert to proper docu-
mentation and programming techniques or chooses a career change. As
the programming expenses mount (unexpectedly, since program mainte-
nance was not thought of as part of the project budget), management is
deciding whether or not to continue the project.

“Scene three” is enacted only by the mature individual or company. At
this stage, programming methods are established and documentation is
standardized. A program library is established. Change procedures are
mandated. The system to be developed as a specification, approved hon-
estly and competently by all parties concerned; the program has a de-
scription both at the top and at the module level; the modules have pro-
logues; often even standard hardware is used.

Experience shows that it is extremely difficult to begin scene three. It
is almost always necessary to burn one’s fingers before acknowledging that

vii



viii

Preface

a fire exists. A number of factors influence this situation, and it is worth-
while to comment on some of them.

Until the advent of the microprocessor, engineers used the computer

principally for problem solving. In this case, many of the following apply:

1.

2.
3.

at

The program is often relatively small and is dedicated to a single task
or to solving a single problem.

The program is used by only one person, the program writer.

At the time of writing, the program writer anticipates that the program
will be used only once. Since no future use is intended, the program-
mer does not write support documentation.

. No formal test program is written. The program is informally tested on

the problem that it is to solve.

. The program exhibits a lack of structure.
. Program documentation, if it exists, consists of a text user’s guide and

a 1- to 3-page flowchart.
Contrast these characteristics with the usual microprocessor applica-

tion:

1

-

A small program, such as that for a communication-system controller,
might easily be 12,000 lines long. A telephone central office switch
may use 15 to 20 16-bit microprocessors, with a total of 200,000 lines
of high-level code. The applications will almost always be multitask and
real-time, and certainly maintenance and options will be involved.

. Many people may be involved in the writing of the program.
. Access to the program data base may be required by the user in order

to enter system-configuration information.

. Maintenance and options are a certainty. These may be as extensive as

the original programming effort.

. The lifetime of commercial equipment should exceed five years, and

the lifetime of telecommunication equipment is twenty years. Although
the program for given equipment should stabilize in a few years, it may
still require updating and is far from having a one-shot usage.

. The program is tested module by module and then is string tested

(i.e., strings of modules are tested), and the system is tested for con-
formance with the system specification.

. The program is written in a structured format.
. The program documentation is extensive, containing system specifica-

tions, program descriptions, structure charts, module descriptions, test
programs, and program code.
The extent to which design, documentation, testing, and maintenance

enter into a program can be seen by the following statistics."

Industrial programming teams report that the programming rate for a

fully documented and tested program product is 1000 statements per year

'F. P. Brooks, The Mythical Man-Month (Reading, Massachusetts: Addison-Wesley,

1975), p. 4—6.



Preface ix

per programmer. This is less than 20 statements per week, or 4 state-
ments per day!

We all know that we can code faster than 4 statements per day' How is
the rest of our time spent? First, the rate of 1000 statements per year
applies to significantly large programs. Compared to one-programmer,
stand-alone programs, a large program requires a great deal of communi-
cation. Communication is used here in a broad sense. It includes not only
communication between people, e.g., programmer to programmer, pro-
grammers to management, programmers to customer, but communication
between program modules as well. It also includes standardization that
will enable the program to fit into a family of program products. The
communication problems increase significantly with program size.

As the requirement for compatibility within the family of program
products is dropped, the programming rate is increased threefold. Such a
program can be tested, repaired, and maintained by anybody and is us-
able in many operating environments for many sets of data, but it is not
a systems-wide product. As the environment is increasingly simplified to
the point where the program is a stand-alone and as testing, documenta-
tion, and maintenance requirements are decreased, the rate again in-
creases at least threefold.

Another unexpected figure concerns program maintenance. Mainte-
nance is the work spent on a program after its original release, including
corrections to the original program and the addition of features that make
it truly operable. Surprisingly, the maintenance effort on a program is
likely to be as great as the effort on the original, prerelease program. In
view of this figure, it is startling that many novice programmers (and nov-
ice companies, for that matter) make no budget allowance whatsoever for
program maintenance. Some rude awakenings await the programming
world. Since the magnitude of maintenance effort depends on documen-
tation quality much more than the original programming effort does,
maintenance alone is a strong justification for suitable software design,
proper documentation, and established administrative methods. ’

Against this background, consider the problem as it is addressed by this
text. First, this text pertains mainly to the single-programmer environ-
ment. The sequel will be aimed at the multiprogrammer environment.
Before addressing the multiprogrammer situation, we encourage individ-
ual programmers to design and document their programs properly. At
every step in the programming process, it is necessary to repeat that the
programmer is not writing the program just for himself or herself, but for
others—in particular, for the maintenance programmer.

Use of This Text

The notes for this text have been used for the last two years for a one-



Preface

semester microprocessor-applications course for electrical engineering
students. The prerequisite was a course in digital logic design. Some stu-
dents had taken a basic Assembly language programming course; others
had not. The text, however, was developed for use in a computer engi-
neering program, now being introduced. The computer engineering stu-
dents study, almost equally, in the electrical engineering and computer
science areas. These students have both Assembly language and digital
logic design as prerequisites. The text has been readily usable in these
various situations. However, those who have been exposed to Assembly
language are usually able to cover the text material in one semester,
whereas others are likely to cover only the first ten chapters.

The empbhasis to be placed on the various microprocessors will be gov-
erned by the laboratory facilities. The microprocessors supported in the
lab will require more emphasis than the others. Many instructors will feel
that to discuss more than one microprocessor only confuses the student.
If each is discussed in detail, this is likely to be true. However, a presen-
tation at the architectural level allows the student to gain a lot from noting
the similarities that exist in the various microprocessor units. Instructors
should also point out the features provided by each device because of its
difference from the other architectures.

The 16-bit microprocessors have not been included in this text. The
primary reason for this is that the course using this text is heavily project-
oriented. It seems unwarranted to require student expenditures for 16-
bit hardware when an 8-bit machine is suitable for project applications.

Peripheral components are presented not with the objective of showing
operation of all devices of a given type (P1Os, for example) or of present-
ing design-level detail. The object is to survey available functions. The
presentation is application-oriented. Design details are left to the manu-
facturers’ manuals, which are to be used in support of the text. These
manuals are the manufacturers’ product specifications and are therefore
the ultimate design authority for any device.

Chapters 1 through 6 are hardware-oriented. The presentatioli covers
the Zilog 780, the Intel 8085, and the Motorola 6800 family. These mi-
croprocessors are all “good” machines: they are all relatively conventional
in their configuration and are easy to understand. Yet their architectural
differences are of interest, too. These are among the devices that the
reader is likely to encounter. As mentioned, it is intended that these
chapters be supported by the pertinent manufacturers’ user’s manuals.
The user’s manuals provide thorough and excellent technical specifica-
tions, timing diagrams and timing requirements, and design detail. These
are the documents the student should learn to use for design. It would

27ilog and Z80 are trademarks of Zilog, Inc., with whom Science Research Associates,
Inc. is not associated.



Preface xi

be both superfluous and presumptuous to attempt to repeat the material
in these excellent documents here. The object is to support the user’s
manuals by providing application detail and practical usage information.

Chapter 5 introduces general-purpose peripheral devices. The first of
these is the nonprogrammable parallel 1/O port. This is followed by some
practical considerations in the use of these devices. Bus buffers and bus
terminations, as well as pull-up and pull-down resistors, are discussed.
Also in the list of general-purpose peripherals are programmable PIOs,
the keyboard-display controller, the counter-timer unit, and the DMA
controller. _

Chapter 6 presents communication interfacing. This includes a thor-
ough discussion of the RS-232C asynchronous communication interface
and its application to microprocessor systems. Synchronous and asyn-
chronous data transmission are defined. The Centronics parallel interface
is introduced, and some comments are made concerning printer interfac-
ing. The 20 ma current loop interface and some of its implementations
are described.

Chapter 7 considers hardware from the system viewpoint. It describes
some typical system circuit boards and some often-used bus structures.

Chapter 8 presents the subset of Assembly instructions that are com-
mon to both the Zilog Z80 and the Intel 8085. These instructions are
given in both the Z80 and the 8085 formats. An appendix provides more
detailed instruction sets for each microprocessor: the 780, 8085, and
6800; Chapter 8 serves merely as a starting place to introduce Assembly
programming. Mention of Assembly instructions is not to imply that high-
level, structured languages are to be completely bypassed. All program-
ming in the following chapters is preceded by both text and pseudo-code
descriptions. The pseudo-code structures are sufficiently like PLM or Pas-
cal structures to allow the pseudo-code to be replaced by these languages
in most instances.

Chapter 9 presents bottom-up programming—the building and use of
tools. This is not only a necessary consideration but also a means by which
the student can do useful programming early in the text, before more
advanced concepts have been presented. Chapter 9 presents the pro-
gram-module specification, the module description or prologue, the
pseudo-code description, and the hierarchy chart. At this stage, the mod-
ule test program is introduced. Its use is emphasized in the laboratory
projects.

Subroutines are introduced in Chapter 10. The concept of subroutines
is presented in their historical evolution, as far as microprocessor use is
concerned, from the original concept of a module implemented only
when needed repeatedly to the modern concept of the structure block
called by the mainline program. The positional relationship of subroutine
parameters is discussed, as are local and global variables. Passage of pa-




xii

Preface

rameters by value, by reference, and by value-result is covered. Imple-
mentation outlines are presented for each of these cases. The function-
type subroutine is also included.

Chapter 11 presents top-down structured programming. Program de-
composition is introduced, along with an outline of the various types of
coupling that can exist between program modules as the program is de-
composed according to different premises. Attention is shifted from the
hierarchy chart of Chapter 9 to the structure chart. Now the communi-
cation between modules becomes evident, and the concept of intermod-
ule coupling is reinforced. Once the whole program or subprogram has
been viewed, the concept of module string testing is introduced. Related
to this is also the introduction of test drivers and test stubs.

Chapter 12 introduces data lists. Linear lists are described, as are for-
ward, backward, and doubly linked lists. Practical applications are given,
and the material presented in the earlier chapters is reinforced.

Chapter 13 adds some thoughts on subroutines that were not required
at the first presentation, in Chapter 10. The use of list handlers is shown.
The first list handlers are implemented as subroutines. Subsequently,
macros are presented, and it is shown how the list handlers can be imple-
mented, using macros.

Chapter 14 outlines the use of a microprocessor development system.
As with earlier chapters, the intent of this chapter is not to duplicate the
tremendous amount of detail given in the manufacturers’ manuals but to
provide the user with an overall picture of the development system and
of the tasks which it can perform. As a rule, it is not the manufacturers’
intent to provide a general, overall picture. It is presumed that the user
has by some means obtained this information. This chapter is of value to
those who must learn a system on their own. For those who are learning
in a classroom environment, this chapter will be reinforced by the labo-
ratory assignments. Although this is the last chapter in the text, it is not
intended that it be the last topic in the course. It should be presented
when it fits best with the laboratory activities. Since use of a development
system can not be covered in one lab session, it may be advantageous to
present the material of this chapter upon several occasions, as the topics
are introduced in the laboratory.

Zilog, 780, Zilog 780 and material attributable to Zilog, Inc. are used
with permission. Neither the author nor SRA is associated with Zilog,
Inc. in any way, and no implication to the contrary is intended. Similarly,
material relating to Intel Corporation and to Motorola, Inc. is included
with permission. It should be mentioned that the devices described
herein often do not represent the latest products of these companies. The
choice has been made for educational reasons.



Preface xiii

This text is dedicated with sincere appreciation to the companies listed
above. It is also dedicated to Hewlett-Packard, Inc. and to Tektronix,
Inc., which have generously contributed to the implementation of the
California State University Chico computer engineering laboratory and
have provided every encouragement in the development of the computer
engineering program. Two of my peers at CSUC deserve special thanks
as respected professionals, as friends, and as industrious co-workers on
the computer engineering project. These are Dr. Larry Wear and Dr.
Bill Lane. We have jointly pursued the same goal, from different vantage
points, for several years. It speaks well that our respect for one another
has continually increased as we have shared this effort.

The following persons read the manuscript and provided many helpful
suggestions: Porter Sherman, University of Bridgeport; Michael Andrews,
Space Tech Corporation; and Dr. Alan D. Wilcox, P. E., Bucknell Uni-
versity. Roy W. Goody of Mission College, Santa Clara, offered useful
technical comments in the final editorial stages. The contributions of all
these individuals are acknowledged with gratitude.



Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Preface

General Description of a Microprocessor System 1

Definitions

Data Representations

Basic Microprocessor Arrangement
Addressing, Device Selection, Chip Enabling
I/0 Address Decoding

Memory and I/O Maps

Memory-mapped 1/0

Description of the Zilog Z80 Microprocessor Family 21

The Zilog Z80 Central Processing Unit (CPU)
780 System Timing

Direct Memory Access (DMA)

Interrupts

Description of the Intel 8085 Microprocessor Family b1

CPU Timing

Address Multiplexing

1/0 Read and Write and Memory Read and Write

Control Signal Decoding of M1 Instruction Fetch Cycle and of
Halt States

Interrupts

Saving Registers

Read Interrupt Mask (RIM) and Set Interrupt Mask (SIM)
Instructions

The SID and SOD Signals

READY (Input)

HOLD (Input)

Description of the Motorola 6800
Microprocessor Family 67

General Description of Motorola 6800 Family Architecture
Pin Descriptions of 6802 and 6808

Addressing Modes

Assembly Language Instructions

Memory-mapped I/0

Variable Storage in System RAM

The Motorola 6809 Microprocessor



Chapter 5 General-Purpose Peripheral Devices 95
Nonprogrammable Parallel I/0 (PIO) Devices
Pulse Transmission Considerations in Using Peripheral ICs
Bus Buffers and Bus Terminations
General Description of Programmable Peripheral Devices
Programmable Parallel 1/0 (PIO) Devices
Parallel I/0 Application Examples
The Intel 8279 Keyboard/Display Interface Unit
Counter-Timer Peripheral ICs
The Direct Memory Access (DMA) Controller

Chapter 6 Communication Interfacing 165

The Electronics Industry Association (EIA) RS-232C
Asynchronous

The Universal Synchronous-Asynchronous Receiver-
Transmitter (USART) Peripheral IC

Asynchronous Data Transmissions

Interconnecting Microprocessor System Components Using
the RS-232C Standard Specification

Synchronous Data Transmission

The 20 ma/Current Loop Interface

The Centronics Parallel Printer Interface

EIA Standard RS-422A

Chapter 7 The Microprocessor and Peripherals as a System 205
The Standard (STD) Bus
The S-100 Bus
The Multibus
Single-Board Computers (SBC)

Chapter 8 Introduction to the Assembly Language
Instruction Set 231
Machine Language
Input/Output (I/0) Instructions
Constants
Immediate Instructions
Variables
Direct Data Moves
Data Moves to and from Memory
Indexing and Counting
Arithmetic Instructions
Logical Operations
Stack Operations
Conditional Instructions
Rotate Instructions



Miscellaneous Basic Instructions
Role of the Editor

The Compiler or Assembler

Role of the Linker

Role of the Library

Chapter 9 Bottom-up Programming 263
Specifications
Pseudo-code Description of the Subroutine
The Assembly Listing
Test Programs
Hierarchy Charts
An Example: Writing the KYBD Program
Summary

Chapter 10 Introduction of Subroutines 291
General Description of Subroutines
Positional Relationship of Parameters
Local Variables
Value Parameters
Passage of Parameters by Reference: Constants
Passage of Parameters by Reference: Value-Result
Passing Parameters by Means of CPU Registers
Passing Parameters Using Ram
Stack-Handler Routines

Chapter 11 Top-down Structured Programming 311
Decomposition of the Program into Modules
Structure Charts
Testing
An Example of Top-down Programming

Chapter 12 Data Lists 331
Linear Lists
Linked Lists, General
Forward-Linked Lists
Backward-Linked Lists
Doubly-Linked Lists
A Linked-List Application
Arrays, Vectors, and Structures =
A Hardware Example of a List Application

Chapter 13 Subroutines Additional Considerations 355
Passing Data by Reference Using Data Vectors
Servicing and Linear Array of Data Vectors
Coupling to Preexisting Subroutines
Consideration of a Separate Stack for Handling Parameters



Chapter 14

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F

Microprocessor Development Systems 371
The Microprocessor Development System Components
Getting Started
Editing
Assembling or Compiling the Program Module
Linking the Object Code Module to Form a Complete Program
Locating the Linked Program
Command Files
Modern Development Systems

Zilog Z80-PIO Technical Manual

ASCII Character Set (7-bit code)

Centronix Parallel Interface for Model 779 Printer
Zilog Z80 Assembly Language Programming Manual
Intel 8085 Assembly Language Instruction Set

MC6809 Instruction Set
Index



1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.2
1.2.1
1.2.2
1.2.3
1.3
1.3.1
1.3.2
1.3.3
1.4
1.5
1.6
1.7

General Description of a

Microprocessor System

Definitions
Binary
Bit
Byte
Nibble
Word
Address Quantity
Data Representations
Hexadecimal Data (HEX)
Binary-Coded-Decimal Data (BCD)
ASCII Representation of Text Characters
Basic Microprocessor Arrangement
Data Bus
Single-chip Microprocessors
Address Bus
Addressing, Device Selection, and Chip Enabling
I/0 Address Decoding
Memory and I/0 Maps
Memory-mapped I/0



1.1

1.1.1

1.1.2

1.1.3

Chapter 1

Definitions

Before commencing with the general description of a microprocessor
system, it is necessary to introduce some definitions. These serve to es-
tablish the usage and generally are true. However, the reader should be
aware that some terms are perhaps machine or author dependent. These
can usually be distinguished by the context or by the definition given in
the machine documentation.

Binary
Binary means capable of having either one of two possible states. Ex-
amples are
1. A binary number system consists only of the symbols 0 and 1.
2. A binary switch operation might be depicted by OFF, ON; UP,
DOWN; or RIGHT, LEFT.
3. Binary decisions or descriptions can be made concerning groups. For
a set of numbers, the following are binary decisions:
a. ODD, EVEN
b. X .gt. N (i.e., X greater than N)
c¢. X .1t. N (i.e., X less than N)

Bit

A bit (short for binary digit) represents one binary choice. With respect
to microprocessors, each bus lead in the system can have one of two pos-
sible voltage levels at any instant. These two voltage levels are designated
logic-0 and logic-1. A bus lead or other point in a system depicting these
levels represents one bit of information. Note that the actual voltages are
not 0 volts and 1 volt but are voltages in one of two possible voltage
ranges representing a binary choice.

In logic-circuit design, it is common practice to represent a logic signal
that is in the true state by a mnemonic such as OPEN. The complement
of this signal is usually written as OPEN. This practice is sometimes fol-
lowed in microprocessor design, but it is probably more common to in-
dicate the complement as OPEN/. This allows the complement to be more
readily expressed in printed material.

A further variation is common in microprocessor usage. For a bus,
which can have either of two states, logic-1 or logic-0, assume that the
mnemonic assigned to the logic-1 state is OPEN. Also assume that, rather
than using the mnemonic OPEN/ for the logic-0 state, we wish to use
some variation of the name CLOSED. In such a case, CLOSED/ is used.
CLOSED/ is, in practice, called an active-low signal. A frequently en-
countered example is the use of MR (memory read) for the logic-1 state
of the memory read-write control line and MW/ for its logic-0 state.

Byte

Because microprocessors operate sequentially, performing one opera-



1.1.4

1.1.5

General Description of a Microprocessor System 3

tion at a time, there is a speed advantage in handling a number of binary
signals simultaneously rather than one bit at a time.

These sets of binary signals are given names relating to their width,
i.e., the number of bits in the set. The most common and also the most
standard such grouping, other than the bit, is the byte. A byte is an 8-
bit-wide signal. A byte-wide register is shown in Figure 1-1.

Nibble

A nibble, represented in Figure 1-1, is a 4-bit-wide signal. A byte con-
sists of two nibbles. The lower nibble represents the least significant four
bits of the byte, and the upper nibble represents the most significant
four.

Word

Word is less well defined than bit, byte, or nibble. The term may be
used in a general sense to mean a set of binary signals. For instance, one
might speak of adding WORD1 to WORD2. This usage allows one to
describe a process generally, without restriction to a particular data
width.

Word may also be used to represent some standard or frequently used
data width associated with a particular computer or microprocessor. For

ke 7 0
(A)
3 0
(B)
7 4
©
Figure 1-1

(A) Representation of a byte-wide register. k = 0
represents the least significant bit position, and
k = 7 represents the most significant bit position.
(B) Location of least significant or low nibble in register.
(C) Location of most significant or high nibble in register.




