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List of symbols

Latin letters

a width of a surface element on the heat exchanger, m

A amplitude, m

b mass absorption coefficient, m? kg™’

B constant

c heat capacity, W skg ' K™'

Ce heat capacity of the continuous phase, Wskg™' K™’

g gas specific heat, Wskg ' K™

&5 particle material specific heat, W s kg ' K™’

(&4 constant

d, particle diameter, bubble diameter, m

dpe characteristic particle size of a cold system, m

don characteristic particle size of a hot system, m

D diameter of optical fibre, diameter of the circulating fluidized bed
(Chapter 15), m

D, pipe diameter, m

Dy, hydraulic diameter of the fluidized bed, m

F cross-sectional area of the fluidized bed, m>

f particle exchange frequency, s~'

f(t) residence time distribution density, s~

i particle exchange frequency at large heat exchanger surfaces, s~

F(r) cumulative residence time distribution

Fy adhesion force, N

Bosits surface area of a particle, m’

Frex surface area of the heat exchanger, m’

g gravitational acceleration, m s 2

g(u — ung)  normalized gas convective heat transfer function, defined by 7.1)
Gy, G, constant

h, Bnax heat transfer coefficient, maximum value, Wm 2 K™

hy instantaneous heat transfer coefficient, Wm 2K !

hge gas convective component of heat transfer coefficient, W m > K™’
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List of symbols  Xxi

particle convective component of heat transfer coefficient,
Wm K™

heat transfer coefficient at large heat exchanger surface,
Wm?K™!

surface-averaged heat transfer coefficient of a particle, Wm > K™
height, m

total height of the circulating fluidized bed (CFB), m

heat transfer coefficient for one particle caused by heat conduction
in the gas, Wm > K '

heat transfer coefficient caused by heat conduction in the gas,
Wm K™

heat transfer coefficient caused by heat convection in the gas,
Wm K™

height of the solids at minimum fluidization, m

height of the lower steady-state section, m

heat transfer coefficient in CFBs when two steady-state sections
occur, Wm 2K™!

heat transfer coefficient in CFBs when one steady-state section
occurs, Wm > K™

heat transfer coefficient in CFBs caused by radiation, W m > K™'
heat transfer coefficient in CFBs effectively caused by radiation,
Wm K™

dimensionless heat transfer coefficient, defined by (7.7)

intensity of unattenuated radiation, s~

intensity of attenuated radiation (Chapter 13), s~
dimensionless heat transfer coefficient, defined by (7.8)
thermal conductivity, Wm ' K™

thermal conductivity of the continuous phase, Wm™' K™
effective thermal conductivity in a particle packet, Wm™' K™'
effective thermal conductivity, defined by (7.9), Wm™ ' K™
gas thermal conductivity, Wm ™' K

particle material thermal conductivity, Wm ™' K™

lift force, N

length, m

1

2/3
= [__M__] , laminar flow length scale, m
\/é(pp - pg)

length of a pipe element, m

2/3
= ——“—] , turbulent flow length scale, m

Vg (Pp — Pe)Pe

mean free path of gas molecules, m

digital luminosity, initial value

length of the y-ray beam in the circulating fluidized bed (Chapter
13), m



xii  List of symbols

t~
o

packing or pipe length, m

minimum length of heat exchanger, m

mass of the solids in the CFB, kg

mass of the continuous phase, kg

solids mass flow rate, kg s”!

gas mass flow rate, kg s~

number of particles, initial value (Chapter 2)
number of particle rows (Chapter 3)

power input, W

pressure, N m >

pu — uny) normalized particle convective heat transfer, defined by (7.11)
Ap pressure drop, N m >
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APcpp total pressure drop in the riser of a CFB, N m 2

P, P, constants

P}, P¥ constants

q12 radiative heat flux from object 1 to object 2, Wm™?

0 energy transfer per unit time, W

¥ integration variable, m

¥o characteristic particle dimension, m

R aerodynamic resistance force, N

R radius (Chapter 3), m

s characteristic length of surface asperities, m

Stmin minimum effective surface asperities according to (3.25), m

Sp particle surface area, inner pipe surface area, m’

t time, s

At time interval, s

T mean temperature, K

T particle temperature, K

Tow suspension temperature, K

T wall temperature, K

AT temperature difference, K

AT logarithmic temperature difference, K, defined by (3.6)

To entrance temperature of the gas, K

T, exit temperature of the gas, K

u superficial gas velocity, m s™*

Unf superficial gas velocity at minimum fluidization condition, m s’

u(y) shear field velocity, ms™"

u lateral particle velocity, ms™'

u, vertical particle velocity, m s~

Uy x-component of the velocity vector in Cartesian coordinates, m s~

) mean pipe flow velocity, superficial velocity of the continuous
phase, m s~

Ummax maximum particle transport velocity, m s~

VG velocity of the gas in the dilute phase, ms™'



List of symbols  xiii

Up velocity of a particle, m s™'

Vg velocity of the gas, m s!

Urel relative velocity, m s

vV particle velocity in shear field, m s
Va fluid volume, m’

Vied volume of a fluidized bed, m’

14 volumetric flow rate of the continuous phase, m’s™'
w velocity of the strands, m s

wy single-particle fall velocity, m s

w probability

X, ),z Cartesian coordinates, m

X coordinate, m

AX length, m

y coordinate, m

Y coordinate, m

Greek letters

a constant

B constant

Y accommodation coefficient

) characteristic dimension for the space around the particles at
particulate fluidization, m

) laminar boundary layer thickness, m

S boundary layer length scale in the transitional regime, m

Oturb boundary layer length scale in the turbulent flow regime, m

€ void fraction

Emf minimum fluidization void fraction

€12 emissivities of solid bodies 1, 2

£5 emissivity of the particles

Ew emissivity of the wall

Sraid emissivity of the system

g* mass-related power input, W kg™

€ local void fraction

Ewall void fraction in the vicinity of the CFB wall

0 time, s

Y wall temperature, °C

Vsusp suspension temperature, °C

¥ particle temperature, °C

D} temperature (Chapter 16), °C

u viscosity, kgm ™' s

T gas viscosity in a cold system, gas viscosity of the continuous phase

in Chapters 17 and 18, kgm™"'s™"
1 -1

Un gas viscosity in a hot system, kgm™ " s



xiv  List of symbols

v kinematic viscosity, kinematic viscosity of the continuous phase,
m’s”!

p density, kg m >

Pb bulk density, kg m™*

Pe density of the continuous phase, kg m~>

Pe gas density, kg m™>

Pec gas density in a cold system, kg m >

Pen gas density in a hot system, kg m™>

Pp particle density, kg m > _

c Stefan—Boltzmann constant = 5.67 X 10_8, Wm2K™

T mean residence time, s

(0} angle

(o} sphericity, dimensionless pressure drop in Chapters 15 and 16,
defined by (15.2)

Op pressure drop shape factor

o cyclic frequency, s

Dimensionless groups
_ 42(P, — PoPe

Ar= ————— Archimedes number
u
C R dr: fficient
= ag coefficien
® 7 [dD/a)py/ 20 )
ky Cst . . ;
Co = 3 dimensionless contact time
PoCpdy
. hd, )
Bi = — Biot number
ky
AP d} 1 ,
Dr = ALovVIC pressure drop number with
PeV € fixed bed percolation
4 (py — pe)d
Eu = — w & Euler number
3 Pg
2
v
Fr = — Froude number
& )
v
Fr,= —=x= particle Froude number
Pp — Pg
dyg
Pe
Wr ; .
Frpws = ——— particle Froude number built
Pp — Pe dop with the terminal free-fall
P

Pe velocity of a single particle



Frp umf

Nu, Nupax

Nucond particle —

Nucond

Nucony

Nuy

Nu,,

Nurad

Nurad effective

Nu,

Nu,

Pe

Peﬂ
Pe,
Pr

Pr.

Umf

/&’__pgdpg
Pe

hrad dp
kg

_ hrad effective dp

kE

>

dy
ke

hD,

e
PgCedpt

kg

PeCedp V[(Pp — Pe)/Peldog
k

e
PeCe Dy

List of symbols

particle Froude number built
with the minimum fluidization
velocity

Nusselt number, maximum
value

Nusselt number for a particle
in the Stokes regime

Nusselt number caused by
heat conduction in the gas

Nusselt number caused by
heat convection in the gas

Nusselt number in CFBs when
two steady-state sections occur

Nusselt number in CFBs when
one steady-state section occurs

Nusselt number caused by
radiation

Nusselt number effectively
caused by radiation

Nusselt number built with the
thermal conductivity of the
continuous phase

pipe flow Nusselt number

Peclet number

fluidization Peclet number
pipe flow Peclet number
Prandtl number

Prandtl number of the
continuous phase

04"



xvi  List of symbols

> | &

Re

Re,

Rerel

Reumf

Re,,

Rewf

Sta

Sta1

Sta,,

Sta,,

(=S
1—¢

Wr dp

hd,

PeCedpu

hconv
PgCg W

dp3 g(pp — pg)2

P

length ratio, { = 0.9 for a
fluidized bed, { = 0.95 for a
fixed bed

Reynolds number, different
definitions

Reynolds number built with
the interstitial fluid velocity

Reynolds number built with
the relative velocity

Reynolds number built with
the minimum fluidization
velocity

Reynolds number built with
the velocity of the
downward-falling wall strands

Reynolds number built with
the terminal free-fall velocity
of a single particle

Stanton number

Stanton number for the first
particle row

mean Stanton number for »
rows of particles

Stanton number for the wall
strands

Prandtl number
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Nusselt number

dimensionless gas velocity
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