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FOREWORD

The papers which appear in this volume were presented at the 18th Annual ASME Design Au-
tomation Conference held in Phoenix/Scottsdale, Arizona, September 13-16, 1992. This conference
was sponsored by the Design Engineering Division of the American Society of Mechanical Engi-
neers, and was organized by the Design Automation Committee.

The underlying goal of the ASME Design Automation Conference is to provide a lively forum for
the interchange of technical ideas and presentation of timely and high quality technical papers in
the area of Mechanical Design Automation. As the field of mechanical design continues to unfold
and evolve into more modern themes that encompass Geometric Modeling of Features and Tol-
erances, Manufacturing Processes, Concurrent Engineering, Automated Structural Shape Genera-
tion, and New Optimization Algorithm, | am happy to report that each of these topics has been
appropriately represented in a technical session.

The conference has a total of 18 technical sessions comprising a total of 93 papers. This second
volume contains 49 papers on topics that include the Geometric Modeling of Curves, Surfaces,
Tolerances and Features, Mechanical Systems Analysis, Compliant Mechanisms and Mechanical
Advantage, Robotics, and Mechanical Design Applications.

As the papers review chairman, | would like to express my sincere thanks to Joe Davidson, who
has courageously undertaken and skillfully orchestrated the entire Design Technical Conference,
to Brian Gilmore, who served as foreign papers chairman, and to Bahram Ravani, Gary Gabriele
and Panos Papalambros, of the ASME Design Automation Committee, each of whom provided
expert guidance for me from their past experiences in chairing this conference. Their help proved
invaluable to me. | would also like to thank Barbara Signorelli and the ASME Technical Publications
Department for coordinating and organizing the papers for publication in the bound volumes.

Finally, | would like to thank all those who contributed the fruits of their research labor for
presentation at the conference, as well as those who took time from their busy lives to review
papers for the conference. The timely, thoughtful and conscientious completion of the reviews
continues to ensure the overall quality of the conference.

David A. Hoeltzel

Papers Review Chairman
Columbia University
New York, N.Y.
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SECOND ORDER DESIGN SENSITIVITY ANALYSIS
OF KINEMATICALLY-DRIVEN MECHANICAL SYSTEMS

Qiushu Cao and Prakash Krishnaswami
Department of Mechanical Engineering
Kansas State University
Manhattan, Kansas

ABSTRACT

Second order design sensitivity information is required for
several design applications, including second order optimization,
minimum sensitivity design and reliability design. The problem
of computing this information in a generalized manner becomes
difficult when the dependence of system response on design is
not explicitly known, as in the case of kinematic systems. This
paper presents a general method for second order design
sensitivity analysis of constrained mechanical systems. This
method uses the constrained multi-element technique for
kinematic analysis combined with a direct differentiation
approach for obtaining first and second order design
sensitivities of the system response. The method was
implemented in a computer program on which several examples
were solved. Three of the examples are presented in this
papers. For each example, the second order sensitivities are
checked against values obtained by finite differencing. In all
cases, the agreement is seen to be very close, indicating that the
proposed method is accurate and reliable.

INTRODUCTION

The response of a physical system is often described in terms of
a set of appropriate state variables. Similarly, the parametric
design of a system is usually described by a set of design
variables. The response of the system is implicitly or explicitly
dependent on the design variables. The evaluation of the partial
derivatives of the state variables with respect to the design
variables is called design sensitivity analysis. Most of the
previous work that has been done is in the area of first order
design sensitivity analysis, i.e.,, only the first order partial
derivatives are computed. However, some applications require
information about the corresponding second derivatives. In
order to compute these, it is necessary to perform second order
design sensitivity analysis of the system.

The second order design sensitivity information of a system can
be utilized in a variety of ways. It has been shown that it can be
used effectively for second order optimization of structural
systems [1]. Second order sensitivity has also been used in the
minimum sensitivity design of four bar linkages [2]. In addition,
second order sensitivity has potential applications in optimal
tolerancing and reliability design. Most previous work in second
order sensitivity analysis has been very problem specific. In the
area of mechanical systems, there has been some success in
developing second order sensitivity analysis methods for specific
[3] as well as generalized dynamic systems [4,5].

The work described in this paper is aimed at developing a
generalized formulation for second order design sensitivity
analysis of constrained kinematic systems. Such a system may be
viewed as a collection of rigid bodies interconnected by joints.
The technique that is employed for kinematic analysis is the
constrained multi-element formulation [6]. In this formulation
each rigid body is assigned six generalized coordinates (or three
generalized coordinates if the system is planar). The generalized
coordinates of all the bodies in the system are placed in a
system generalized coordinate vector, denoted by q. The system
generalized velocity vector, q, and the system generalized
acceleration vector, §, are defined correspondingly.

The joints in the system are modeled by writing the kinematic
constraint equations corresponding to each joint. These
equations are nonlinear algebraic equations that are written in
terms of the generalized coordinates. Standard kinematic
constraint equations are available for describing revolute and
transnational joints [4,6]. Other types of joints can also be
described by writing suitable constraint equations. In addition
to the constraints imposed by the joints, a kinematically driven
system must also have a set of kinematic driving functions; in
fact, the number of driving equations must be exactly equal to
the number of degrees-of-freedom of the system if the problem
is well-posed. In the current formulation, these driving functions
are also modeled by writing suitable kinematic constraints in



terms of the generalized coordinates. Most of the commonly
encountered driving functions, such as constant velocity and
constant acceleration drives, can be modeled in this way.

In order to perform second order design sensitivity analysis, a
set of design variables must also be specified. This set can
contain any parameters that do not vary with time. The most
common choices for design variables are link lengths and/or
locations of target points on links. Once the design variables are
selected, they are placed in a design vector, denoted b.

With these definitions, it may be seen that the problem of
finding the second order design sensitivity of the response of a
kinematic system can be viewed as the problem of computing
the second order partial derivatives of the vectors q, q and §
with respect to the design vector, b. Using the subscript
notation for partial derivatives, we can say that our task is to
find the quantities qy,, q,,, and §,,. Each of these terms is a
transient quantity that must be evaluated at each instant (or
configuration) at which the kinematic analysis is performed.

In some instances, it may be necessary to compute the design
sensitivity of a set of performance functions of the system,
instead of the system response itself. This situation can be easily
handled once the second order design sensitivity of the system
response is known, provided the performance functions are of
the form f(q, q, 4, b, t). The details of how this computation
can be done may be found in [4].

KINEMATIC ANALYSIS

The governing equations of a kinematically driven system are
constraint equations obtained from the joints and the driving

functions. These equations can be written in the form:
G@.b,1 =0 (M

Where q is the generalized coordinate,
b is the design variable vector and
t is the time.
Equation 1 represents a system of simultaneous nonlinear
equations that can be solved by the Newton-Raphson iteration.
The Newton updates for this are given by:
G, a9 =-G 2)

To solve for velocities, Equation 1 is differentiated with respect
to time to obtain the following relationship:
G, 4§ = -G, 3)

Further differentiation of Equation 3 with respect to time yields
a set of equations that can be solved to get accelerations:

G,i=-G,2G4-Ghd @)

Equation 2, 3, and 4 can thus be used to solve for the position,
velocity and acceleration of the system. It should be noted that
the coefficient matrix is the same in Equations 2,3, and 4. Thus,
the matrix needs to be factored only once after the Newton-
Raphson iteration converges; all subsequent solutions are done
by direct forward and backward substitution. The entire solution
process is repeated at every instant (or configuration) at which
the response is desired.

DESIGN SENSITIVITY ANALYSIS

The technique that is adopted for performing design sensitivity
analysis is the direct differentiation method [7] which has been
used successfully for computing design sensitivities of
constrained dynamic systems. The basic idea of this method is
to differentiate the governing equations of the system to obtain
a set of equations in terms of the corresponding sensitivity
coefficients. The governing equations for a kinematic
mechanical system are the kinematic constraints of Equation 1.
Thus, following the direct differentiation approach, we
differentiate both sides of Equation 1 with respect to each
design variable and rearrange terms to obtain the following set
equations:

G4, = -G, j=l,...m (5)

where m is the number of design variables.

Equation 5 can be directly solved to obtain the first order
sensitivity coefficients of position. Furthermore, Equation 5 can
be differentiated with respect to time to obtain a set of
equations for the first order sensitivity coefficients of velocity:

Gq q,,l = _(qubj+Gbl) j=1,...,m (6)

A further differentiation of Equation 6 with respect to time
yields a solvable set of equations in the sensitivity coefficients
of acceleration:

qubj = _(2qul’l+qub;+Gb/) Jj=1,..,m )

The direct differentiation strategy can be extended to obtain
second order sensitivity information also. In this case, we must
differentiate the first order sensitivity equations with respect to
design to get a set of equations in the second order sensitivities.
In order to do this, we first differentiate Equation S5 with
respect to design and obtain a set of second order position
sensitivity equations: -
Gy, = ~Cs)y 9,7 (C ), Grgs, Crp, (g
j=1,...,m; k=1,...m

Similarly, Equation 6 can be differentiated with respect to
design to get a set of second order velocity sensitivity equations:

Gdbp, = —(Gq&b)qu;(Gq&,),,‘-(qub)qu"(qub)b‘
_G.qu/:k_(G.quj)uub,+quqbk+G‘buub,+Gblb,
k=1,...m

9
Jj=1,..,m;

Finally, Equation 7 can be differentiated with respect to design,
resulting in a set of equations for the acceleration sensitivities:

Gy, = ~C i), Gy -2C 4,0, 2C 3 s
_2(645 b;)bk _2qu blbk_(équ)qq b, '(qubl)qq by

_(dqu)i]iibn > (équ)bg _équ/’g h ébﬂqbk - Gbﬂqbk ( 10)

_Gb,dq.bk-Gblbk

j=l,.,m; k=1,..m

It is worth noting that Equations S through 10 all have the same



coefficient matrix, G,. As noted earlier, this matrix is already
available in factored ?orm. Thus, the calculation of the first and
second order sensitivity coefficients can be performed very
efficiently if they are done concurrently with the kinematic
analysis.

NUMERICAL EXAMPLES

The methods presented in the preceding section were
implemented in a computer program. Three example problems
that were solved using this program are presented in this
section. All problem dependent FORTRAN subroutines were
generated automatically using the symbolic computing language
REDUCE-3. For all the three problems, the system response as
well as the first and second order design sensitivity coefficients
were computed. The first and second order sensitivities were
checked by comparing them against values obtained using a
finite difference method. The results of this check are plotted
for one selected coordinate for each example. It was found that
the difference between the two methods was never greater than
1%.

Example 1: Double Slider Mechanism

The initial assembly and design variables of a double
slider mechanism are shown in Figure 1. Only self weight is
acting on the system. The simulation time is from 0 to 1 second.
The initial data (in MKS) are:

Masses:

m,=8.0; m,=8.0;
Moments of inertia:

J,=8.0; J,=8.0;
Design vector:

b=[1.4142];
The initial position:

y;=1.0m;
The initial velocity:

y,=0.2 m/s.
The driving function:

¥,-0.2=0.0
The second order sensitivity results for the position and
acceleration of the horizontal slider are plotted in Figure 2 and
3 respectively. The sensitivities obtained by finite difference are
also shown in each figure. It is seen that the analytical second
order sensitivity curve and the finite difference second order
sensitivity curve lie almost exactly on top of each other, thus
appearing as a single curve in the plots.
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Figure 1: Double slider Mechanism (Example 1)
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Figure 2: Finite difference check on second order sensitivity
of position of link 2, example 1
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Figure 3: Finite difference check on second order sensitivity
of acceleration of link 2, example 1

Example 2: Slider-Crank Mechanism
The initial assembly and design variables of the problem are
shown in Figure 4. A force F=125N is applied to the piston as
shown. The only other forces are the weights of the members.
The simulation time is from 0 to 1 second.
Masses:
m, =5.0; m,=15.0; m;=3.0;
Moment of Inertia:

J,=0.5; J,=2.5; J;=8.0;
Design variables:

b=[0.25,0.25]"
Initial velocity:

¢,=1 rad/s.
Driving function:

&, =(m/4)+0.05 2+ *2

The second order sensitivity results for the position and
acceleration of the slider are plotted in Figures 5 and 6
respectively. The sensitivities obtained by finite difference lie
almost exactly on top of the analytical second order sensitivities.



Example 3: Quick Return Mechanism
The initial assembly and design variables are shown in figure 7.
Masses:
m, =8.0; m,=1000.0; m;=100.0; m,;=30.0; ms=50;
Moment of Inertia:
J,=8.0; J,=2000.0; J;=100.0; ,=10.0; Js=1.5
" Design variables:
b=[1.52.02.0 1.9]"
Initial position:
$,=0.0 rad.
Initial acceleration:
$,=0.1 rad/s®.

Figure 4: Slider-Crank Mechanism (Example 2) Driving function:

¢,=0.05x¢
The results are shown in Figure 8 and 9 respectively. Like the
previous two examples, there is very good agreement between
the analytical second order sensitivities and the sensitivities
obtained by finite difference.
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Figure S: Finite difference check on second order sensitivity
of position of link 3, Example 2.
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ABSTRACT

This paper presents a criterion for determining whether
or not a flexible multibody dynamic system reveals stress
stiffening effects. In the proposed criterion, the eigenvalue
variation that results from adding the modal stress stiffness
matrix to the conventional linear modal stiffness matrix is
examined numerically before actual dynamic simulation. |If the
variation is sufficiently large for any flexible body, then stress
stiffening effects are said to be significant and must be included in
dynamic simulation of flexible multibody systems. Since the
criterion uses the most general stress stiffness matrix, which can
be represented as a function of applied and constraint reaction
loads as well as of a system of 12 inertial loads, this criterion is
applicable to any general flexible multibody dynamic systems.
Several numerical results are presented to show the effectiveness
of the proposed criterion.

1. INTRODUCTION

Modern mechanical systems such as spacecraft, satellites,
mechanisms, and robotic manipulators are typically light, fast,
precise, and complex in order to reduce material and power costs
and to increase performance. Dynamic analysis of such systems
requires not only proper account of both gross body motion and
concurrent small elastic deformation of flexible bodies but also
accurate inclusion of the important coupling effects existing
between these two modes of dynamic behavior (Kane et al. 1987).
One of the important coupling effects, so called stress stiffening
effects, arises from the variations in flexible body stiffness
induced by inertial, internal constraint, and external loads. For
example, the tip deflection of a spinning beam modeled without
including stiffness variations resulting from a centrifugal force
will diverge as the spin rate approaches the 'quiescent natural
frequency of the first bending mode.

During the last decade, several approaches have been
proposed to incorporate stress stiffening effects into dynamic
formulations of flexible multibody systems. These approaches are
summarized by Ryu (1991), who suggested a method of computing
the most general stress stiffness matrix of an arbitrary flexible
body undergoing large gross motion accompanied by small elastic
deformation. This stress stiffness matrix, represented as a
function of applied and constraint reaction loads as well as of a

system of 12 inertial loads distributed throughout the flexible
body, can be preprocessed by a readily available finite element
analysis program for general structures.

Practical importance of stress stiffening effects, however,
has been debated because these effects are not always significant in
every mechanical system, and moreover, general inclusion of
stress stiffening terms in the system equations of motion may not
be a simple and inexpensive task (London, 1989; and Kane et al.,
1989). Despite this disagreement, it is agreed that a good
criterion would be very useful for determining the significance of
stress stiffening effects. In other words, it will be very useful to
know before actual dynamic simulation whether or not a given
flexible multibody system reveals stress stiffening effects.

Very recently, Padilla and Flotow (1991) proposed a
criterion for judging significance of stress stiffening effects for
open-chain flexible multibody systems when they were
investigating simple bounds on the applicability of their
linearized equations of motion. According to their criterion,
stress stiffening effects are not important if any prescribed
motion of the body fixed reference frame is much smaller than the
ratio of the minimum singular value of the conventional linear
modal stiffness matrix to the maximum singular value of the
modal stress stiffness matrix associated with this prescribed
motion. It seems, however, that this criterion may not be
applicable to systems with more than one motion and load because
the resultant stress stiffening effects are generally a function of
externally applied loads, body motion, and constraint reaction
loads, which are usually unknown values prior to actual
simulation. In addition, because flexible multibody dynamic
systems are usually highly nonlinear, this simple bound on the
magnitude of one of the motions of the body fixed reference frame
does not sufficiently answer the question of how small the ratio
must be in order not to show the stress stiffening effects in the
final elastic displacements or stresses.

Another type of criterion for determining significance of
stress stiffening effects can be devised by simply comparing an
input speed with the first natural frequency of a whole system.
This kind of rule-of-thumb criterion has been used widely in
determining whether or not rigid body dynamic simulation
combined with quasi-static structural analysis is valid in order to
avoid solving more complex coupled equations of motion (Lowen
and Chassapis, 1986). Following the logic used in this criterion,
for example, stress stiffening effects are not anticipated if a
constant input crank speed of a closed loop flexible four-bar
mechanism is far smaller than the first bending natural frequency



of the whole system. However, it seems that this criterion may
not be useful for a system with time-varying input speeds and
with the configuration-dependent first natural frequency of
mechanisms. To the authors' knowledge, a generally applicable
criterion for complex flexible multibody dynamic systems has not
been developed until now.

The objective of this paper is to present a generally
applicable and practical criterion for determining when stress
stiffening effects become significant in dynamic simulation of
constrained flexible multibody systems. In section 2, the
variational principle is used to derive Cartesian equations of
motion of a flexible body that include stress stiffening terms. A
finite element based method that is applicable to general and
complex structures is also summarized to compute the stress
stiffening terms. Section 3 presents a criterion based on the
stress stiffness matrix to check the significance of stress
stiffening effects. In section 4, several numerical examples are
presented to demonstrate the validity and effectiveness of the
proposed criterion. Finally, some conclusions and
recommendations are made in section 5.

2. EQS. OF MOTION WITH STRESS STIFFENING TERMS

Al iati 1 i f Motion of a Flexible B

Since a stress stiffness matrix plays a key role in setting
up the criterion for judging the significance of stress stiffening
effects in a later section, variational equations of motion of a
flexible body are derived with the objectives of defining a stress
stiffness matrix and of explaining how this stress stiffness matrix
is incorporated into the dynamic equations of motion of a flexible
body. The variational principle and the linear theory of elasticity
are used in this derivation. In addition, in order to systematically
include stress stiffening effects, nonlinear quadratic terms in the
strain-displacement relationship are included in the internal
virtual work.

Consider a flexible body that is in dynamic equilibrium in
the deformed configuration as shown in Fig. 1. In this figure, the
X-Y-Z coordinate system is the inertial reference frame and the
X-y-z coordinate system is the body reference frame in an
undeformed configuration. Throughout the following derivations,
bold letters denote vectors or matrices. An underlined variable is
measured in the inertial reference frame, while other variables
are measured in a local body reference frame.

Deformed Configuration

I onS

(Surface Traction)

x  Undeformed
Configuration

Figure 1 Undeformed and Deformed Configurations of a Flexible
Body

The variational equations of motion of a flexible body are
given as (Washizu, 1982)

J5—7(i7 - pIP)AV + lSr_‘i’l’i’dS - J;Sg‘i’ir‘i’id\/ (1)

where ag‘i’ is the virtual displacement of point p that is consistent
with constraints; fi’ is the body force density at point p; p is the

mass density; I is the acceleration of point p; I? is an applied
surface traction at point p; 1‘; is the second Piola-Kirchhoff stress

tensor; Be‘i’i is the variation of the Green-Lagrange strain tensor
consistent with given boundary conditions; and V and S are the
volume and surface of the body before it is deformed. Dots over a
vector in Eg. (1) and in the following derivations denote the total
differentiation with respect to time.

Stress stiffening terms are derived from the virtual work
done by internal forces. This virtual work is rewritten here as

ij i

8U = i sePrPdv (2)

The virtual Green-Lagrange strain tensor can be written as

5e =8t + 8" (3)
Ll ' Ll
where
8ej = (1/2)(8u,; + 8u, ) (4)
8€; = 8u, U, . (5)

Note that superscript p of Séi’i and r‘i’i, and of the deformational

displacement vector uP is omitted for notational convenience in
Egs. (3) through (5) and in the following derivations.

The second Piola-Kirchhoff stresses are assumed to be
composed of incremental stresses resulting from dynamic
deformation and reference stresses, which are assumed to be
induced by D’Alembert inertial loads arising from the gross body
motion of the body reference frame, externally applied loads, and
constraint reaction loads in the undeformed configuration of a
flexible body. The reference stresses are considered as those
stresses that existed in a flexible body in the undeformed
configuration, that is, before the start of a deformation of interest
(Washizu, 1982). If the linear strain-stress relationship is
assumed for a homogeneous and isotropic material, the second
Piola-Kirchhoff stress tensor can be written as

P r
T = Dijkl Eat T (6)
where D is the constitutive tensor, ¢? is the linear strain

ijkl Kl
tensor, and T(ii is the reference stress tensor.

Substitution of the virtual strain tensor in Eq. (3) and the
stress tensor in Eqg. (6) into the internal virtual work of Eq. (2)
yields

2 £ A r
8U = JaeijDﬁklskldV+ l&eijtiidV+ J;Buk'itiiuklidv (7)

where the quadratic term is neglected.

Assume that the elastic displacement vector u at point p is
expressed as a linear combination of the time-dependent
deformation modal coordinate vector a and the space-dependent

mode shape matrix ®P(s?) defined at point p of the undeformed
body; i.e.,

u(sh,h = ®P(sf)a(t) (8)

Then, by substituting Eq. (8) into Egs. (4), (5) and (7), Eq. (7)
can be rewritten as

53U =5a"(K* + K"a + sa'F' (9)



where K* is the conventional linear modal stiffness matrix, K" is
the modal stress stiffness matrix, and F' is an additional force
vector (Bathe, 1982). The terms in Eq. (9) are defined as

K* = ([B‘TDB‘dv,wnh B* = L&P (10)
K" = J;B"TTB"dV, with B" = V&P (11)
F = ‘[B‘Tt'dv (12)

where differential operator matrices L and v, and a (9 x 9)
stress matrix T are defined in Ryu (1991).

The variational equations of motion of a flexible body that
include stress stiffening terms are given in matrix form as (Ryu,
1991)

.
[r',8n",8a"{M|  |+S+V-Q}=0 (13)
a

for r, 8n, and da that are consistent with constraints acting on
the flexible body, where &r is the virtual displacement of the
origin of the body reference frame; 8n is the virtual rotation of
the body reference frame; 8a is the variation of a deformation

modal coordinate vector; r, @, and @ are translational
acceleration, angular velocity, and angular acceleration vectors of
the body reference frame. The entries in matrix M and vectors §
and Q are presented in Ryu (1991).

The generalized internal force vector V, derived from the
virtual work, is defined as

0
V(a, t") = 0 (14)
(K* + KMa + F'

Note that the time-varying stress stiffness matrix K" and an
additional force vector F" are added to the generalized internal
force vector V in comparison with the conventional flexible body
equations of motion (Wu et al., 1989).

2.2 m ion of Str iffening Term

As shown in Eq. (11), the stress stiffness matrix K" is a
function of the reference stress state that exists before
deformation of a flexible body. This stress state is assumed to be
induced from D'Alembert inertial loads resulting from gross body
motion described by the motion of the body reference frame as
well as from externally applied loads and constraint reaction loads
resulting from the motion of adjacent bodies. Since the linear
theory of elasticity is assumed in defining the reference stress
state, the stress stiffness matrix via the reference stress state can
be obtained by a standard linear structural analysis (Cook,
1985).

Here, the procedure proposed by Ryu et al. (1991) is used
to obtain the stress stiffness matrix through a series of structural
analyses. In this procedure, quasi-static structural analyses

generate the stress stiffness influence coefficient matrices kT

associated with unit values of 12 time-dependent terms (r ,

y,
I“ (;.) (l) (;) [0} [0} ® 00,00 ,0 0 ) 1ese terms are
z’ x’ y' 2" X’ y’ "z’ X Y' y z' Tz x”

defined by representing the inertial loads induced by gross body

motion as a combination of space-dependent and time-dependent
terms. Then, a stress stiffness matrix K; resulting from the

gross body motion of the flexible body is obtained by applying the
superposition principle:
+m2R +m2R"+m2R"+mmK +wu)k1"1+mu)k (15)
In case of the externally applied and constraint reaction
loads, static structural analyses generate the stress stiffness
influence coefficient matrix associated with each time-invariant
unit load in each coordinate axis of the body reference frame.
Then, a stress stiffness matrix Rg resulting from applied and
constraint reaction loads is obtained as
naf

=2(Tak" + T3R" + TR"

xi axi yi ayi zi a1|

ncf

+Z(T°R" +T°R + TER" f:’k’1‘+f;’kg+ffk;(1e)
[

xj exj yi cyi zj c21

for the body force °, applied concentrated loads T?, and constraint
reaction loads T¢, where naf and ncf are number of applied and
constraint reaction loads, respectively. The subscripts x, y, and z
denote each body coordinate axis.

By combining the stress stiffness matrices R: in Eq. (15)

and T(; in Eq. (16), the total modal stress stiffness matrix K" is
obtained as

= $T(RD +RD)é (17)

where & is the (n x m) modal matrix in the nodal space, and
where n and m are the total number of nodal degrees-of-freedom
and modal coordinates, respectively.

Up to here, only computation of stress stiffness matrix K" in
Eq. (11) has been explained. The additional force term F' in Eq.
(12) can be computed in exactly the same way as the computation
of K" because the superposition principle can also be applied.

2. m_Eqs. of Motion with Stiffening Term

System equations of motion of a flexible multibody system
can be derived from the variational equations of motion of a
flexible body in Eq. (13) using either a relative joint coordinate
formulation or an absolute Cartesian coordinate formulation. For
a constrained flexible multibody system, a general form of
dynamic equations of motion can be represented as (Wu et al.,
1989)

dey:;\:d (18)

where M, q, ‘l'q, A, and Q are the system generalized mass

matrix, the system generalized coordinate vector, the system
constraint Jacobian matrix, the unknown Lagrangian multiplier
vector associated with constraints, and the system generalized
force vector, respectively. Note that the system generalized force
vector @ contains the stress stiffening force.

In addition to Eqg. (18), constraint acceleration equations

are needed in order to uniquely solve the unknowns q and A. These
equations can be expressed as (Haug, 1989)

Ya=-(Yamq-2¥ q-Y =y (19)

where subscripts t and q denote partial differentiation with
respect to time and vector q, respectively. By combining Egs.



(18) and (19), the system dynamic equations of motion can be
written in matrix form as

[lﬁ vT j[d ] [6]
q =

Yq 0 A v

The solution and the integration of Eq. (20) give histories of the
acceleration of system generalized coordinates and Lagrangian
multipliers. From these data, constraint reaction loads are
derived via the Lagrangian multipliers (Kim and Haug, 1989).
Then these values can be used to update the stress stiffness matrix

defined in Egs. (15) and (16) at the current time step (Ryu et al,,
1991).

(20)

3. CRITERION FOR DETERMINING THE SIGNIFICANCE OF
STRESS STIFFENING EFFECTS

Stress stiffening effects must be included in dynamic
simulation of a flexible multibody system whenever the addition of
the stress stiffness to the conventional linear stiffness results in a
significant variation of the stiffness of the system. However,
general inclusion of stress stiffening terms in the system
equations of motion may not be a simple and inexpensive task.
Therefore, it will be very useful to know whether or not a given
flexible multibody system reveals stress stiffening effects before
actual dynamic simulation.

This section presents a criterion for determining the
significance of stress stiffening effects in flexible multibody
dynamic systems using the stress stiffness matrix derived in the
previous section. Unlike the criterion proposed by Padilla and
Flotow (1991), the proposed criterion is applicable to general
flexible multibody systems with closed loops. Briefly speaking,
stress stiffening effects become significant when a mechanical
system operates at a high speed, and/or when a deformable body is
very flexible even at a low speed, and/or when large magnitude
loads act on a deformable body. This can be seen in the derivation
of the stress stiffness matrix of a flexible body because, as Egs.
(15) and (16) show, the total stress stiffness matrix is a
function of (a) geometry of the flexible body, which is used in
defining the stress stiffness influence coefficient matrices, (b)
linear and angular accelerations and angular velocities of the body
reference frame, (c) applied loads, and (d) constraint reaction
loads. Quantitative questions then arise about speed, flexibility,
and magnitude of acting loads, which make significant
contributions to the change of stiffness, and which in turn, results
in significant changes in the final outputs such as elastic
displacements or dynamic stresses. In order to answer these
questions, other questions must be resolved first:

(i) how can stiffness variation be measured with addition of the
stress stiffness ?, and (ii) how much change in stiffness does
significantly change final elastic displacements and stresses ?

Since the stiffness of a flexible body changes by addition of
stress stiffness, as seen in Eq. (14), the amount of variation of
stiffness of a flexible body can be measured by the variation of the
eigenvalues of the total modal stiffness matrix of the flexible body
that results from the addition of the modal stress stiffness matrix.
Note that the stiffness variation is examined body by body rather
than for the total system, even in a multibody system, because
stiffness variation in a body affects the stiffness variation of the
system. In the measurement of stiffness variation, the modal
stiffness instead of the nodal stiffness matrix is used because the
generalized elastic force vector in Eq. (14) is represented in the
modal space and because the size of the modal stiffness matrix is
much smaller than that of the nodal stiffness matrix.

For a flexible body with time-varying modal stiffness
matrix K(t), the characteristic equation of the eigenvalue
problem is given as

DET(K(t) - A(t)l) = 0 (21)

10

where DET means the determinant operator, | is an identity
matrix, and A(t) is a time-varying eigenvalue associated with the
time-varying total modal stiffness matrix K(t). This matrix
consists of the time-invariant linear conventional modal stiffness
K* and the time-varying modal stress stiffness matrix R". The

total modal stiffness matrix can then be represented symbolically
as

K(t) =

K*+ Te(DKR] (22)
1

where c(t) are the time-varying scalar coefficients shown in Egs.
(15) and (16).

The amount of variation of the stiffness of a flexible body
can be measured by a time-varying ratio between the eigenvalues
of the matrices K(t) and K*. This is defined as

A(t) from K(t)

R, = A% from K*?

(23)

where A(t) and A* are one of the eigenvalues of the total modal
stiffness matrix K(t) and the conventional linear modal stiffness
matrix K?, respectively. Since the first eigenvalue of a matrix is
usually the largest in many systems, R1(t) is usually defined for

the first eigenvalue. Note that eigenvalue A(t) must be computed
from Eq. (21) at every time step. The cost in computing this,

however, is not expensive because the size of matrix K(t) is
usually small for each flexible body.

In order to avoid computing the eigenvalues at every time
step, another ratio Rz(t) may be used as an alternative to ratio

R,(t). The alternative ratio R.(t) is defined as

A" from k’l‘

R,(0) = 1.0+2i,ci(t)m (24)

Note that ratio Rz(t) is an algebraic sum of the contribution of the

eigenvalue variation resulting from each stress stiffness influence
coefficient matrix. Since eigenvalues k’i' from the stress stiffness

influence coefficient matrices R'i‘ are time-invariant, computation
of Rz(t) is much cheaper than that of R1(t). If the stiffness

variation is not significant, then either ratio should be close to
unity at any time. If at some time, either ratio is far from unity,
then it can be said that stress stiffening effects may be significant.
Note that a near-zero ratio implies that buckling may occur due to
compressive forces.

For a single flexible body with prescribed gross body
motion, the above ratios can be preprocessed before actual
simulation because the coefficients ci(t) are known variables. For

multibody systems, however, some of the coefficients c(t), such

as linear and angular accelerations of the body reference frame
and constraint reaction loads, are usually unknown before actual
dynamic simulation of the flexible multibody systems in which
stress stiffening effects might be included. In this case, these
unknown values may be approximately obtained by a rigid body
dynamic simulation, which usually generates mean values on
which flexibility effects are superimposed. Even though the
values ci(t) from rigid and flexible body dynamic simulations are

very different for a very flexible multibody system, the ratios
based on rigid body approximations can still give good measures
because overall trends may not be much different. Numerical
results in section 4 demonstrate that either ratios can be used as a
practical measure to check whether or not the system reveals
stress stiffening effects.



