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PREFACE

This book has been written to serve as a text for students in a first course in
mathematical analysis. Such a course would usually follow rather quickly
the traditional freshman calculus and generally appears in college catalogs
under the name of Introduction to Analysis, Mathematical Analysis, or
Advanced Calculus. The body of material which has come to be known as
freshman calculus serves as a prerequisite. This presumes that the reader is
equipped with good skills in advanced high school or college algebra and in
trigonometry.

Today calculus serves a much more diverse audience than in years
past. Not only are mathematics and natural science majors and engineering
students taking calculus but there are growing numbers of business, sta-
tistics, and computer science students in these courses. Traditionally, the
purpose of freshman calculus has been to teach the student the facts and
applications of calculus. This means that the student acquires skill in the
mechanics of calculus and a certain level of proficiency at using calculus in
those many areas where the methods of calculus prove useful. Often, how-
ever, little time in the freshman calculus course is spent on the theory which
enhances one’s understanding of the subject. This is especially true today,
when the trend has been to expose the student as early as possible to a
widening variety of calculus applications. It is the role of the sophomore or
junior level mathematical analysis or advanced calculus course to provide
the understanding that is so often lacking when the student leaves the
freshman calculus course.

The authors believe that the purpose of advanced calculus is twofold:
(1) to allow the student to become acquainted with, and develop a certain
level of proficiency in, the techniques and methods of mathematical analysis
(sometimes the proof is more important than the theorem) and (2) to be
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viii PREFACE

able to use these techniques and methods to reinforce and solidify an under-
standing of the learned calculus results. There is not an abundance of new
material or facts to be learned; the emphasis instead is on looking at much
the same calculus topics in greater depth and with a definite direction
toward understanding. At the end of such a course the student should not
only be better at doing and using calculus but should be well versed in the
methods and techniques of mathematical analysis. This, after all, is the
substance that provides an appreciation for the theory of calculus and lays
the foundation for more advanced work in the mathematical sciences.

Since this book is intended for the reader who has not previously seen
a theoretical and rigorous development of calculus, we have included nu-
merous illustrative examples with detailed explanations. In the initial chap-
ters some of the proofs tend to be expository in style, with a necessary
sacrifice of elegance. This is done to provide more insight into the construc-
tion of mathematical proofs and to help develop the skills used in proving
statements in mathematics. Many of the exercises call upon the student’s
ability to use the methods and techniques employed in the text, and, con-
versely, working the exercises provides a deeper and more thorough under-
standing of the theorems and their proofs. The exercises should be dealt
with deliberately as they serve as an integral part of the text.

We have found that the first seven chapters provide a good arrange-
ment of topics for a one-semester course in mathematical analysis. Chapter
1 contains a development of the real number system. If a developmental
approach is desired then all the sections should be covered. For an axio-
matic approach sections 1.2 to 1.4 can be skipped without loss of conti-
nuity. In either case the reader should strive for an overview of this material
rather than a detailed exposition of each and every step in the construction
process. Chapter 2 develops sequences and sets as tools to use in the calcu-
lus. The core of the material is in Chaps. 3 to 7, which should be covered in
detail, except perhaps the optional sections (4.4, 5.4, and 6.4).

In a two-semester course the instructor may wish to include some or
all of the optional sections, together with the last three chapters in the text.
We have found that this can adequately be covered at a leisurely pace in
such a one-year course. If it is desired to place more emphasis on multi-
variate calculus, Chaps. 8 and 9 should be supplemented with topics of the
instructor’s choosing, and Chap. 10 may become optional, depending on the
audience and the direction of the particular course.

We would like to thank Professor George Springer for his many
helpful suggestions during the various stages of development of the
manuscript. We also appreciate the efforts of our typists, Elizabeth Bator,
Betty Leszczak, and Amy Raskin.

William R. Parzynski
Philip W. Zipse
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CHAPTER

ONE
REAL NUMBERS AND FUNCTIONS

1.1 SETS AND FUNCTIONS

In the study of analysis, as in many other areas of mathematics, the con-
cepts of set and function are fundamental. Every language has certain words
which are basic and remain undefined but of whose meaning there is uni-
versal acceptance. In mathematics the word “set” is such a term; a set is
understood to be a well-defined collection of objects called elements. The
term well-defined just means for us that some mechanism exists whereby
one is able to determine whether or not a given element belongs to the set.

We denote sets by capital letters 4, B, C, etc., and use lowercase letters
a, b, ¢, etc,, to represent elements. If an element x belongs to or (equiva-
lently) is a member of the set S, we write x € S; to designate that the
element x does not belong to S we write x ¢ S.

If each element in the set A is also a member of the set B, we say that A
is a subset of B and write 4 = B or equivalently B 2 A. We call two sets A
and B equal and write 4 = B provided A € B and B € A. Two sets are
equal, then, if the sets consist of precisely the same elements. If A € B and
A # B, we say that A4 is a proper subset of B and designate this by 4 ¢ B
(equivalently B o A). If A < B, then every element in A is also in B but
there is at least one element in B which fails to be in A.

In any discussion involving sets the letter U denotes the universal set,
which is the set of all elements under discussion; the symbol &5 denotes the
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empty set, that set which contains no elements. Then for every set 4 we
have

dcAcU

Specific sets can be defined by listing all the elements in the set or by
stating a characteristic property which is unique to those elements belong-
ing to the set. For example

G=1{a B, v 6, ¢
can be alternately defined by
G = {x|x is one of the first five letters of the Greek alphabet}

which is read “G is the set of all elements x such that x is one of the first
five letters of the Greek alphabet.” When elements in a set are listed, each
element should be listed exactly once; order is not important.

We use the above notation to define some natural ways of combining
sets to construct new sets:

A U B={x|x€ A4 or x € B (or both)}
A v B is called the union of A and B, read “A4 union B.”
An B={x|xe Aand x € B}
A N Bis called the intersection of A and B, read “A intersection B.”
A ={x|xe Uand x ¢ 4}
A’ is called the complement of A (sometimes denoted U — A).

A x B={(a b)lac Aand b e B}

A x Bis called the cartesian product of the sets 4 and B.

We can also consider the union and intersection of more than two sets.
The union of a class of sets is just that set consisting of all those elements
which belong to at least one set in the class. The intersection of a class of
sets is the set consisting of all those elements which belong to each and
every set in the class.

The cartesian product of A and B is the set of all ordered pairs (q, b),
where a is any element in A and b is any element in B. Recall that the
concept of ordered pairs of numbers was needed when graphing equations
in the (x, y) plane. The plane is a geometric model of a cartesian product,
and the graph of an equation is a subset of this cartesian product. The
geometry allows us to visualize graphs and enhances our understanding of
important concepts in algebra and calculus.

Definition 1.1 A function is a nonempty set X, a nonempty set Y, and a
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rule of correspondence f which associates with each element x € X a
unique element y € Y.

The element y associated with a given element x € X is denoted f(x),
and we write y = f(x); y is called the image of x under f, and x is called a
preimage of y. The function is often denoted by /: X — Y or sometimes just
by f when the sets X, Y are clear from the context. The set X is called the
domain of the function and the set f(X) = Y, defined by

f(X)={ye Y!|y=f(x) for some x € X}

is called the range of the function. If f(X) = Y, we say that the function is
onto Y. The graph of the function, written gr (f), is a subset of the cartesian
product X x Y and is defined by

gr(f) = {(x, f(x)] x € X}

As mentioned earlier, if X and Y are sets of numbers, the graph of f can be
{and often is) visualized as a subset of the (x, y) plane. Some authors find it
convenient to identify a function with its graph and to think of a function
as a special kind of subset of the cartesian product X x Y.

A function f: X — Y is called one-to-one if f(x;) = f(x,) implies that
X, = X3, that is, if no two distinct elements in the domain of f are assigned
to the same element in the range. Thus each range element has a unique
preimage. One-to-one functions are useful because they allow us to define a
new function called the inverse function. If f : X — Y is one-to-one, we define
the function f ~': f(X)— X, read “f inverse,” by the following: For each
y € f(X) define f~!(y) to be the unique preimage of y under f. Then
f7'y) = x if and only if f(x) = y. It is clear thatf ! is onto X and thatf !
is one-to-one. If f:X — Y is one-to-one and onto Y then f is called a
one-to-one correspondence between X and Y. In thiscase f " »:Y—> X is a
one-to-one correspondence between Y and X.

Just as we can combine sets to construct new sets, we can combine
given functions in the following way: If f: X —» Y and g: Y — Z, we define
the composite function g o f: X — Z by g < f(x) = g(f(x)) for every x € X,
Thus composition of two functions is defined as the sequential action of the
individual functions. For example, let f be the function which converts
temperature in degrees Fahrenheit to temperature in degrees Celsius and let
g be the function which converts temperature in degrees Celsius into absol-
ute temperature in kelvins. Then g - fis the function which converts tem-
perature in degrees Fahrenheit into temperature in kelvins.

Two functions f: X — Y and g: X — Y are said to be equal and we write
J =g provided f(x) = g(x) for every x € X. If f: X — Y, we shall sometimes
want to consider f restricted to some nonempty subset 4 € X. We define
fa:A— Y by f4(x) = f(x) for every x € A. If f'is one-to-one then so is f, for
each nonempty 4 < X, and if f, is onto Y for some nonempty 4 < X then
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so is fonto Y. The function iy : X — X defined by iy (x) = x for every x ¢ X
is called the identity function on X. iy “maps” each element x € X onto
itself. It is clear that iy is one-to-one and onto X and that ix! =iy. If
f:X - Y is one-to-one thenf ' o f= iy and f o f~* = i/y,. In particular, if
f:X— X is one-to-one and onto X then we have that f~!cf=
fef = Ix.

If X is a nonempty set, a relation R in X is a nonempty subset of
X x X; that is, & # R < X x X. We have already encountered some re-
lations in X; if f: X — X then gr(f) is a relation in X. Of course, not every
relation in X is the graph of some function. In order for the relation R in X
to be the graph of a function it is necessary (and sufficient) that for each
x € X, R contains exactly one ordered pair with first component x. Graphs
of functions are important relations, but there are other kinds of relations
that are equally important. We investigate one type of relation, called an
equivalence relation, in the following paragraph.

If R is a relation in X, we write x ~ y provided (x, y) € R.

Definition 1.2 A relation R in X is called an equivalence relation if:

(@) x ~ x for every x € X (reflexive property).

(b) x ~ y implies y ~ x for all x, y € X (symmetric property).

(¢) x~y and y~z implies x ~z for all x, y, ze X (transitive
property).

Suppose F = {f| f: X — Y}, that is, F is the set of all functions f with
domain X and range contained in Y. Let xo € X be fixed. We define the
following relation R in F:(f, g) € R (equivalently, f~g) provided
f(xo) = g(xo). It is clear that f~f for every fe ¥, and if f~g then
[(x0) = g(x0); hence g(x) =f(x,), and so g ~f. Moreover, if f~g and
g~ h then f(xy) = g(xo,) and g(xo) = h(xy). Therefore f(x,) = h(xy) and
f ~ h. It follows that R is an equivalence relation in F.

A partition of a nonempty set X is a class of nonempty subsets of X
which has the following property: Each element in X belongs to exactly one
set in the class. One of the important facts dbout any equivalence relation in
X is that it induces a partition of the set X. Suppose R is an equivalence
relation in X. For each x € X we define the equivalence class of x by

[x]={yeX|y~x}

Theorem 1.1 The distinct equivalence classes of an equivalence relation
in X form a partition of X.

Proor Let R be an equivalence relation in X. Each equivalence class
[x] is a subset of X (by definition) and is nonempty since x € [x]
(reflexive property). Moreover, each x € X is in at least one equivalence
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class, namely x € [x]. It remains to show that an element x € X cannot
be in two distinct equivalence classes. Suppose that x € [y]. Then x ~ y
and y ~ x by the symmetry property. Now, if z € [y] then z ~ y, and so
z ~ x by the transitive property. Thus z € [x], and so [y] < [x]. Sim-
ilarly, if z € [x] then z ~ x and by the transitive property z ~ y. Thus
z € [y], and so [x] € [y]. It follows that [y] = [x], and so [x] is the
only equivalence class containing x.

In our previous example of an equivalence relation in the set F of all
functions f'with domain X and range contained in Y, each equivalence class
consists of all the functions in ¥ which map x, to the same element in Y.
Theorem 1.1 has a partial converse, which says that any partition of the
nonempty set X induces an equivalence relation in X for which the distinct
equivalence classes are precisely the sets in the partition. To see this define

R = {(x, y)| y belongs to the same set in the partition as x}

The reflexive, symmetric, and transitive properties are easily verified. There-
fore, in this sense, there is little difference between an equivalence relation in
X and a partition of X.

The next example of an equivalence relation is useful in that it allows us
to gauge the size of infinite sets. We define this equivalence relation below
and return to a discussion of infinite sets in Sec. 1.6.

Let U be some fixed universal set and let C be a class of subsets of U (C
is a set whose elements are subsets of U). We define a relation in C as

R = {(4, B)| A, B € C and there exists a one-to-one correspondence
f:A— B}

Again we write A ~ B when (4, B) € R. Foreach A € G, 4 ~ A sincei, is a
one-to-one correspondence between A and itself. If 4 ~ B then there is a
one-to-one correspondence f: A— B. We noted earlier (also see Exercise
1.4) that f ! is a one-to-one correspondence between B and A and so
B~ A. If A~ B and B ~ C then there exist one-to-one correspondences
f:A— Band g: B— C. The function g - f: 4— C is one-to-one and onto C
(see Exercises 1.5 and 1.6), and so A ~ C. Therefore the reflexive, symmetric,
and transitive properties hold, and so R is an equivalence relation in C.

In the next three sections we construct the set R of all real numbers.
This material can be omitted if the reader chooses, and there is no loss in
continuity in going directly to Sec. 1.5, where the important properties of R
are summarized.

EXERCISES

1.1 Show that if f: X — Y is one-to-one then (f =) ™' = f.
1.2 Show that if f: X — Y is onto Y then there exists a function g: Y — X such that /o g = iy.
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1.3 Show that if f:X— Y is one-to-one then there exists a function h: Y — X such that
hof=iy. Verify that hyy, = f !

1.4 Show that if f: X — Y is a one-to-one correspondence between X and Y then fhYoXx
is a one-to-one correspondence between Y and X.

1.5 Show that if f:X— Y is one-to-one and g:Y — Z is one-to-one then gof: X—2Z is
one-to-one.

1.6 Show thatif f: X — Yisonto Y and g: Y — Zis onto Z then g - f: X — Z is onto Z.

1.7 Let X be the set of all residents of New Jersey. Determine which of the following are
equivalence relations in X:

(@) x ~ y provided y has the same natural parents as x.

(b) x ~ y provided y lives within 5 miles of x.

(¢) x ~ y provided y has the same date of birth as x.

(d) x ~ y provided y is a brother of x.

1.8 Find all functions f: X — X such that the graph of f, gr(f), is an equivalence relation in
X. Describe the equivalence classes.

1.9 Describe in what sense a function f: X — X can be considered as an example of a relation
inX.

1.10 Show that if X and Y are nonempty sets then X x ¥ ~ Y x X, where ~ is the equiva-
lence relation from the final example of Sec. 1.1.

L11 Let X be any set and let P(X), called the power set of X, be the set of all subsets of X.
Prove that there is no one-to-one correspondence f: X — P(X).

1.2 THE NATURAL NUMBERS

We begin our development of real numbers with the set N of natural
numbers 1, 2, 3,.... All of us have had far more than merely a casual
acquaintance with this set; indeed, our initial experiences in mathematics
dealt mostly with counting and the arithmetic of natural numbers. We
could certainly list many properties of natural numbers, properties which
we first encountered in our beginning years in elementary school or even
earlier. But if we are going to outline a development of the set of all real
numbers, we must be quite specific about which properties of the set N will
be assumed to be true. From these assumptions or axioms the other famil-
iar properties will follow.

Let N be a set whose elements we shall call natural numbers. We take
the statements P1 to P5 as our axioms:

P1. 1 e N; that is, N is 2 nonempty set and contains an element we desig-
nate as 1.

P2. For each element n € N there is a unique element n* € N called the
successor of n.

P3. For each element n € N, n* # 1; that is, 1 is not the successor of any
element in N.

P4. For each pair n, m € N with n # m, n* # m*; that is, distinct elements
in N have distinct successors.

P5. f(@ A< N,(b)1 € A,and (c) p € A implies p* € A then 4 = N,
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These five axioms are called the Peano postulates, and all the known
properties of natural numbers can be shown to be consequences of them.
P5, called the principle of mathematical induction, is an important tool in
many mathematical proofs. It often appears in the following form.

If for each natural number n, S(n) is a statement which depends on n
then in order to prove that S(n) is a true statement for each and every
natural number n we define the set A to be the set of all those natural
numbers n for which S(n) is true (4 < N). If we can show that §(1) is true
(1 € A) and if we can show that the truth of S(p) implies that S(p*) is true
(r € A implies p* € A) then it follows from the principle of mathematical
induction that S(n) is true for every natural number n(4 = N).

The axioms allow us to name the natural numbers in the conventional
way.

(@) 1 e Nby PL

(b) 1* e N by P2 and 1* # | by P3. Name 1* = 2; then 1, 2 are distinct
natural numbers.

{c) 2* e N by P2, and 2* # 1 by P3. 2* #2 by P4 (since 2 # 1). Name
2* = 3; then 1, 2, 3 are distinct natural numbers.

(d) 3* e N by P2, and 3* # | by P3. 3* % 2 by P4 (since 3 # 1). 3* # 3 by
P4 (since 3 5 2). Name 3* =4; then 1, 2, 3, 4 are distinct natural
numbers.

By continuing to name natural numbers in this way indefinitely, we get a
set A =1{1, 2, 3, 4,...} of distinct natural numbers. Since A satisfies the
induction hypothesis of PS5, it follows from Axiom PS5 that 4 = N and so
every natural number has been named. Therefore

N=1{1,23456..}

Next we develop an “arithmetic” in N by defining two binary oper-
ations called addition (+) and multiplication (-).

Definition 1.3 Addition:

n+1=n* foreachne N
and
n+ p* =(n+ p)* foreachne N and pe N
Multiplication:
n-l1=n for each n e N
and

n-p*=(m-p)+n forecachne Nand peN
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Notice that the operations of addition and multiplication are defined
inductively: the definition of addition first gives the sum n + 1 and then the
sums n+2=mn+D* n+3=mn+ 2)* n+4=(n+ 3)* etc. Similarly,
the definition of multiplication first gives n -1 and then the products
n-2=Mm-Y)+n n-3=m-2)+n n-4=(n-3)+n, etc. Thus, it
should come as no surprise that the proofs of the various properties of the
arithmetic of natural numbers are based on Axiom PS5. As an example we
prove the following.

Associative law for addition

m+n+p=m+m+p forall m, n, pe N

Proor Let m, n € N be fixed but arbitrary and define
A={peNjm+n+p=m+ (n+ p)}
It is clear that 4 = N, and since
m+n+l=mt+n*=m+n*=m+{n+1)
we have that 1 € A. Now suppose p € 4; then
' m+n+p=m+(n+p)
Hence m+n+pr=[m+n+pl*=[m+@xn+p]l*
=m+m+p=m+((n+p*

and so p*e A. It follows from Axiom P5 that A= N. Thus
(m+n)+ p=m+ (n+ p) for every natural number p. Since m and n
were arbitrary, the associative law for addition is established.

The other properties of natural numbers can be proved in a similar
fashion. They are listed below, and it is recommended that the reader prove
them in the order given since some of the proofs will be simpler if pre-
viously established properties are used along with the five axioms in ver-
ifying a given property.

Commutative law for addition

m+n=n+m forallm, ne N
Distributive laws
p-m+n=@p m+(@-n for all m, n, pe N
m+n-p=m-p)+(n-p for all m, n, pe N
Associative law for multiplication

(m-n-p=m-(n-p forallm,n,pe N
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Commutative law for multiplication
m-n=n-m for all m, ne N
Cancellation laws

p+m=p+nimpliesm=n forallm,n,peN

and
p-m=p-nimpliesm=n forallm,n, peN

We verify the first cancellation law and leave the second to the ex-
ercises.

Proor Let S(p) be the statement “p + m = p + n implies m = n.” If
1+ m =1+ n then m* = n*, and so (by P4) m = n. Thus S(1) is true.
Suppose S(p) is true; then p+m=p+n implies m =n. Now if
p*+m=p*+nthen(l+p)+m=(_1+p)+nandsol +(p+m=
1 4+ (p + n). Since S(1) is true, p+ m = p + n. But S(p) is true; hence
m = n, and consequently S(p*) is true. It follows from the principle of
mathematical induction that S(p) is true for every natural number p;
thatis,p+ m=p + nimpliesm = nforallm, n,pe N.

One of the first facts about natural numbers that we become familiar
with is that some natural numbers are “larger” than others. This notion is
called order and is introduced as follows. We define a relation in N called
an order relation, symbolized by < and read “less than.” For anym,n e N
we write m < n provided there is a natural number p such that m + p = n.
This relation in N is clearly not an equivalence relation since it is neither
reflexive nor symmetric. However, the transitive law is satisfied, for suppose
m < n and n < p. Then there are natural numbers g, and ¢, such that
m+¢q,=n and n+q,=p. Thus p=n+q,=(m+q,)+q,=m+(q, +g,) and
som < p.

Now since n + 1 = n* for every natural number n, n < n*; and so

l<2<3<4<5<6< ...
The following law is fundamental and can be proved directly from the
definition of the order relation in N.
Law of trichotomy For every pair m, n € N exactly one of the following
holds:

(@) m = n.
() m < n.
(c) n<m.



10 INTRODUCTION TO MATHEMATICAL ANALYSIS

We often write m > n to mean n < m. Another relation in N that is fre-
quently used is < read “less than or equal to” and is defined by m < n
provided m < n or m = n. This relation is both reflexive and transitive but
not symmetric. It follows from the law of trichotomy that if m < n and
n<mthenm=n.

The next theorem, called the well-ordering principle for N, is an impor-

tant property which is characteristic of the set of natural numbers. This
principle is used frequently in the development of the real number system
(Sec. 1.4) and, as we see in the exercises, is logically equivalent to the
principle of mathematical induction.

Theorem 1.2 Every nonempty subset A = N has a first element; that is,
there is a p € A such that p < a for every a € A.

Proor We assume that 4 is a nonempty subset of N and that 4 has no
first element and show that this leads to a contradiction. Define M = N
by

M = {xeN|x < aforeach ae A}

By the law of trichotomy M n A = &. Now 1 ¢ A; otherwise 1 would
surely be the first element in 4. Hence 1 < a for each a € 4, and so
1e M. Assume pe M; then p<a for each ae 4. If p+ 1 € A then
p + 1, which is the first natural number larger than p, would be the first
element in 4, in contradiction to our assumption that 4 has no first
element. Thus p+1¢ A, and so p+ 1 <a for each ae A. Hence
p+ 1€ M and by induction M =N.But M n A =, and so 4 = &,
which is a contradiction. Therefore A must have a first element.

EXERCISES

1.12 Use the law of trichotomy to prove the cancellation law:

p-m=p - nimpliesm=n forallm,n,peN
1.13 Prove
1+2+3+“'+n=n(n2+1) for each n e N
1.14 Prove
12+22+l32+"-+n2=%)(2n+1) foreachne N
1.15 Prove

P42 434+ 4+n®=01+243+--4+n? foreachneN



