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PREFACE

The aim of aerofoil theory is to explain and to predict the
force experienced by an aerofoil, and a satisfactory theory
has been developed in recent years for the lift force in the
ordinary working range below the critiocal angle and for that
part of the drag force which is independent of the viscosity
of the air. Considerable insight has also been obtained into
the nature of the viscous drag and into the behaviour of
an aerofoil at and above the critical angle, but the theory
remains at present in an incomplete state. The problem of
the airscrew is essentially a part of aerofoil theory, since the
blades of an airscrew are aerofoils which describe helicat
paths, and a satisfactory theory of the propulsive airscrew
has been developed by extending the fundamental principles
of aerofoil theory.

The object of this book is to give an account of aerofoil and

airscrew theory in a form suitable for students who do not
possess a previous knowledge of hydrodynamics. The first
five chapters give a brief introduction to those aspects of
hydrodynamics which are required for the development of
aerofoil theory. The following chapters deal successively with
the lift of an aerofoil in two dimensional motion, with the
effect of viscosity and its bearing on aerofoil theory, and with
the theory of aerofoils of finite span. The last three chapters
are devoted to the development of airscrew theory.
- In accordance with the object of the book, complex mathe-
matical analysis has been avoided as far as possible and in
a few cases results have been quoted without proof, the reader
being referred for further details to standard text-books or to
original papers on the subject.

My thanks are due to my wife for her assistance in pre-
paring a number of the figures and in reading the proof sheets,
and to the Cambridge University Press for their care and
vigilance in passing the book through the proof stage.

H G.
Farnborough, April 1926.



PREFACE TO SECOND EDITION

Great advances in the theory of aeronautics have taken place
since the first edition of this book by my late husband
appeared in 1926, but the more fundamental parts of the
theory, which are the subject of this book, remain in large
measure unchanged. Particularly important advances have
been made in the theory of viscous motion and of the flow in
the boundary layer. At my request Mr H. B. Squire of the
Royal Aircraft Establishment, Farnborough, who was a
colleague of my husband, has prepared a set of notes which
appear as an Appendix to the present edition and these notes
indicate where important developments have taken place and
where further information on the subject matter can be
found. I am most grateful to Mr Squire for his assistance and
desire to tender him my sincere thanks.

In preparing this second edition the opportunity has been
taken to replace the non-dimensional k coefficients by the
now more generally accepted C coefficients and my son,
M. B. Glauert, has undertaken the necessary revision. One or
two other minor changes have been made and a bibliography
of some of the more important modern books on aero-

dynamics has been added.
M. G.

Cambridge 1946
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CIIAPTER 1
INTRODUCTION

1-1. Tt is a fact of common experience that a body in
motion through a fluid experiences a resultant, force which,
in most cases, is mainly a resistance to the motion. A class
of body exists, however, for which the component of the
resultant force normal to the direction of motion is many
times greater than the component resisting the motion, and
the possibility of the flight of an aeroplane depends on the
use of a body of this class for the wing structure.

A wing or aerofoil has a plane of symmetry passing
through the mid-point of its span, and the direction of motion
and the line of action of the resultant force usually lie in this
plane. The section of an aerofoil by a plane parallel to the
plane of symmetry is of an elongated shape with a rounded
leading edge and a fairly sharp trailing edge. The chord line
of an aerofoil is defined as the line joining the centres of
curvature of the leading and trailing edges and the projection
of the aerofoil section on this line is defined as the chord
length. Aerofoil sections which are used on airscrews are flat
over most of the lower surface and the chord line of these
sections is nsually taken along the flat under-surface of the

Fig. 1.

aerofoil. The angle of incidence a of an aerofoil is defined as
the angle between the chord and the direction of motion
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relative to the fluid, and the centre of pressure C of an aerofoil
is defined as the point in which the line of action of the
resultant force R intersects the chord 4 B (fig. 1). The resultant
force is resolved into two components, the lift L at right
angles to the direction of motion and the drag D parallel to
that direction but opposing the motion. It is customary to
use the leading edge A of the chord as a point of reference and
the resultant force has a moment M about this point, whose
sense is such that a positive moment tends to increase the
angle of incidence®*. The magnitude of this moment is
- M = — AC (L cose + Dsina),

where AC is the distance of the centre of pressure behind the
leading edge of the chord.

The resultant force on an aerofoil of a given shape at a
definite angle of incidence depends mainly on the density
p of the fluid, the relative velocity V of the aerofoil and the
fluid, and some typical length I of the aerofoil. These three
quantities can be combined in the unique form I V? to give
the dimensions of a force, and non-dimensional coefficients
of lift and drag may be defined by dividing the force com-
ponents by this product. The stand:rd lift and drag coefficients
of an’ aerofoil are defined by the equations

L= Cp.3pV%8,

D= Cp.4pV?8,
where S is the maximum projected area of the aerofoil which,
in the case of a rectangular aerofoil, is the product of the
chord and the span. The corresponding definition for the
moment coefficient is

M = Cy; . 3pV?Se,

where ¢ is the chord of the aerofoil. These definitions are not
unique and the older British practice is to use pV? instead of
the dynamic pressure 3p V2. This gives coefficients k., k,, and
k,, half as large as those above.

The lift and drag coefficients of an aerofoil are functions
of the angle of incidence and fig. 2 shows the curves for a
typical aerofoil, the drag being drawn to five times the scale

* See Note 1 of Appendix.
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of the lift. The lift coefficient varies linearly with the angle
of incidence for a certain range and then attains & maximum

D;é Angle o Incidence
-0-4
Fig. 2.

value at the critical angle of incidence. The important work-
ing range of an aerofoil is represented by the linear part of
the lift curve and in this range the drag is small compared
with the lift, but on approaching the critical angle the drag
increases rapidly.

Fig. 3 shows the variation of the position of the centre of
pressure, the distance of the centre of pressure behind the
leading edge of the aerofoil being expressed as a fraction of
the chord. Analytically this centre of pressure coefficient is

AC Cyr Oy ,
ABT " Cpcosa + Cpsina . Oy (approximately),

and theory and experiment agree in showing that the moment
coefficient varies in a linear manner with the lift coefficient
below the critical angle. The centre of pressure of an aerofoil
section normally moves backwards as the angle of incidence
decreases and tends to infinity at the negative angle of in-
cidence for which (Cp cos @ + Cp sin «) vanishes, i.e. when
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the resultant force on the aerofoil is parallel to the chord.
This angle of incidence is approximately equal to the angle
at which the lift vanishes.

0-6
\ Centre of Pressure Coefficient
-4
-0-2
Angle of Incidence
s 0 5° 10° 15°  20°
b 0. 2
-0-4
¥ig. 3.

The main object of aerofoil theory is to explain and to
predict the lift and drag experienced by an aerofoil, and a
satisfactory theory has been developed in recent years for
the ordinary working range below the critical angle. The
determination of the maximum lift of an aerofoil and of the
critical angle at which it occurs is not yet possible, although
some insight has been obtained into the cause of the
phenomenon.

1-2. The development of aerofoil theory.
The explanation of the lift force of an aerofoil depends

essentially on the nature of the fluid, and the difficulty of
obtaining a satisfactory theory is associated with the difficulty
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of defining the essential characteristics of the fluid in a simple
and reliable manner.

An early attempt to develop a theory of the force on an
inclined flat plate is due to Newton, who assumed that the
fluid consisted of a large number of solid corpuscles. These
corpuscles were assumed to be inelastic and, on striking the
plate, the component of their velocity normal to the plate
would be destroyed. The mass of fluid meeting a plate of
area § at an angle of incidence « in unit time is SpV sin ¢ and
the velocity normal to the plate is V sin . Hence the plate
would experience a force normal to its surface of magnitude

R = SpVisinta.

If the corpuscles are assumed to be perfectly elastic, this
force is doubled, but in either case the force given by this
theory at small angles of incidence is too small. The estimate
of the drag of a flat plate set normal to the direction of
motion is more satisfactory and is of the correct order of
magnitude.

A better definition of the characteristics of a fluid was
obtained by regarding the fluid as a continuous homogeneous
medium. An essential characteristic of a fluid is that it
cannot support tangential stresses in a state of equilibrium,
but when adjacent layers of the fluid are in relative motion
tangential stresses exist and oppose the motion. This charac-
teristic is due to the internal friction or viscosity of the fluid.
The viscosity of the air is small and may be neglected in a
large number of problems, but at times the viscosity is of
fundamental importance and in all cases it appears to exert
a determining influence on the type of motion which ocours,
even when the motion proceeds exactly as in a non-viscous
fluid. Another characteristic of a fluid is its compressibility,
which is negligible for a liquid but important for a gas. The
density of the air must be regarded in general as a function
of the pressure and temperature, but the variations of the
pressure in the flow past a body are sufficiently small to
justify the assumption that the density of the air is constant.
This assumption, however, ceases to be valid when the
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velocity of the flow becomes comparable in magnitude with
the velocity of sound and allowance must then be made for
the compressibility of the air.

These considerations led to the conception of the air as a
perfect fluid, i.e. as a continuous incompressible non-viscous
medium. The development of the theory of fluid motion has
been based on this conception and the results deduced from
the theory are of great value in many cases. Unfortunately
the theory led to the astonishing conclusion that a body in
motion through a perfect fluid does not experience any
resultant force.

An attempt to surmount this discrepancy between theory
and fact was made by Helmholtz and Kirchhoff by assuming
that the flow past a body, instead of passing round the whole
surface, leaves a wake or dead-water region behind the body.
This method of discontinuous flow* has been applied to an
inclined flat plate in two dimensional motion, which is
equivalent to an aerofoil of infinite span, and gives a resultant
force normal to the surface of magnitude

msing .
R= 4 +7eina SpV™.
This force is of the correct order of magnitude for small
‘angles of incidence and also for a flat plate set normal to
the direction of motion, but the actual numerical values are
not in good agreement with experimental results.

A lift force can also be obtained in a perfect fluid if the
flow is assumed to have a tendency to circulate round the
body, and modern aerofoil and airscrew theory is based on
this conception. The development of the theory for an aerofoil
of infinite span, which corresponds to motion in two dimen-
sions, is due in the first place to Kutta} and Joukowski}, and

* For the development of the theory see Lamb, Hydrodynamics,
§73 ef seq.

1 “Auftriebskrifte in strémenden Fliissigkeiten,” Illust. aeronaut.
Mitteilungen, 1902. “ Uber eine mit den Grundlagen des Flugproblems in
Beziehung stehende zwei dimensionale Strémung,” Sitzb. d. k. Bayr.
Akad. d. Wiss. 1910.

1 “Uber die Konturen der Tragfichen der Drachenflieger,” ZFM,
1910.
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the extension to the general case in three dimensions, which
follows the general lines suggested by Lanchester*, is due to
Prandtlf. The theory gives results in close agreement with
experiment but there remains the difficulty of explaining the
origin of the circulation. In a perfect fluid this circulation
could not develop and it must be ascribed to the action of
the viscosity in the initial stages of the motion.

The general aerofoil theory indicates that there is a drag
force (induced drag) associated with the lift of an aerofoil,
but for motion in two dimensions this induced drag becomes
zero and it is again necessary to turn to the viscosity of the
fluid for the explanation of the small drag force (profile
drag) which wtuaﬂy exists. The development. of the theory
of an aerofoil is therefore based in the first place on the
assumption that the air is a perfect fluid, and the viscosity
is introduced at a later stage to explain the origin of the
circulation and the existence of the profile drag.

1-3. Atmospheric relationships.

Although the compressibility of the air can be neglected
in most problems of the flow past a body, the density of the
air cannot be regarded as an absolute constant but must be
determined as a function of the pressure and temperature of
the undisturbed air according to the physical law

pop?
Do pobo’
where p is the pressure, p the density and 6 the absolute
temperature.
In the atmosphere the pressure and density are connected

with the height above the ground by the equation

d

but to determine the conditions at any height it is necessary
to know also the relationship between the temperature and

* Aerodynamics, 1907. An account of his theory in a less developed
form was given by Lanchester to the Birmingham Natural History and
Philosophical Society in 1894.

T “Tragfliigeltheorie,” Goitingen Nachrichien, 1918 and 1919.
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the height. This relationship will vary at different places
and at different times, but a standard atmosphere has been
adopted by many countries as a basis of comparison. The
standard atmosphere is defined by a pressure of 760 mm. of
mercury (14:71b. per sq. in.) at ground level and by the

temperature law T = 15 — 0-0065z,

where 7' is the temperature in degrees centigrade and z is the
height in metres. This law represents the average conditions
in western Europe and is valid up to the height where the
temperature ceases to fall on approaching the isothermal
layer. The variation of pressure and density with height for
the standard atmosphere is given in table 1.

When a change of pressure occurs so rapidly that there is
no exchange of heat between adjacent fluid elements, the
pressure and density are related by the adiabatic law

P _ ( P_)’,

Do \p
where y is the ratio of the two specific heats of the gas and
has the numerical value 1-4 for air. The adiabatic law would
be satisfied in the atmosphere if the temperature gradient
were 3°C. per 1000 ft., and whenever the temperature

gradient rises above this value the atmosphere is in an
unstable condition which gives rise to convection currents.

Table 1.
Standard Atmosphere.
[eight Pressure Density Temperature
ft. 2/1o plpe °C.

0 1-000 1-000 150
5,000 0-832 0-862 51
10,000 0-688 0-738 - 48
15,000 0-565 0-630 -14-7
20,000 0-460 0-534 -24-6
25,000 0-372 0-449 -345
30,000 0-298 0-375 -44-4
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1-4. Unaits.

It is customary in aeronautics to express numerical values
in British Engineering units and to take the second as the
unit of time, the foot as the unit of length and the pound as
the unit of force. A new unit of mass becomes necessary,
defined by the condition that unit force acting upon unit
mass produces unit acceleration. This unit of mass is called
the slug and is such that a body which weighs W lb. has a
mass of W/g slugs (g = 32-2, approx.).

Continental writers use a similar engineering system in
which the second is the unit of time, the metre is the unit of
length and the kilogram is the unit of force. The name
newton has been proposed for the corresponding unit of mass.

The principal relationships between the two systems of
units are as follows:

Length  1m, = 3-281 ft.,
Force 1 kg. = 2-204 1b.,
Mass 1 newton = 0-672 slug,

and the standard density of the air at ground level is 0:00238
slug per cubic foot or 0-125 newton per cubic metre.



