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Preface

Since this manuscript was completed in Aﬁgust, 1980, a
great deal of progress has been made on some of the topics
treated. Working independently, Brylinski-Kashiwara and
Beilinson-Bernstein have established Conjecture 2.1.7 on the
composition series of Verma modules. Luszﬁig and I have used
the work of Beilinson and Bernstein to prove Conjectures
2.2.12 and 2.3.11 on Harish-Chandra modules, computing all
composition series in the case of integral infinitesimal
character. [This settles Problems 9 and 10 of Section 9.7.]
The non-integral case remains open. The’proofs rely on the
Weil conjectures and the Deligne-Goresky-MacPherson inter-
section homology theory. It is hot yet clear how these
developments will affect tﬁe material presented in this book
-- they do not provide any obvious substantial simplifica-
tions, although in some cases they suggest significant improve-
ments in the formulation of the theory.

I would like to thank Janet Ellis for typing and proof-
reading a long and messy manuscript with great care and
skill in the midst of many other responsibilities. I have
the dubious satisfaction of knowing that no errors remain

which are not of my own devising.

Cambridge, Massachusetts

April, 1981
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Introduction

This book is a survey of some recent work on the (non-
unitary) infinite dimensional representations of a real
reductive Lie grolp G. There are three major topics. The
first is Langlands' theorem on the classification and reali-
zation of the irreducible representations of G (Theorem
6.5.Y¥2). They ar. described in terms of certain "standard
representations" (Definition 6.5.2), which generalize the
principal series and are sometimes reducible. The second
topic is the reducibility of these standard representations.
The main results (Theorem 8.6.6 and Proposition 8.7.6) are
due to B. Speh and the author; they are not quite decisive.
The third topic is a conjecture which describes explicitly
the decomposition of standard representations into irredu-
cible representations -- or, equivalently, the Harish-Chandra
characters of the irreducible representations. This
generalizes a conjecture,of Kazhdan and Lusztig for Verma
modules, and is describedﬁin Section 9.6.

Since the theory of non-unitary representations of G was
created by Harish-Chandra essentially as a means to study
unitary representations, some apology might seem to be re-
quired for a book in which unitary representations play almost
no part. The first explanation for this omission is simply
a lack of space. The first two topics at least are very
important for recent work on unitary representations. For
example, the study of unitary representations with non-zero
continuous cohomology (see [3]) has been advanced by the

algebraic study of certain representations which are still
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not known to be unitary. (They are included in the conjec-
turally unitary representations of (6.5.17) below.) The
theory of "complementary series" of unitary representations
depends on (among other things) an understanding of the
reducibility éf standard representations. Thus Theorem 8.6.6
provides a large number of unitary representations, and a
proof of the conjecture of Section 9.6 would provide even
more.

The real explanation, however, is that non-unitary
representation theory is interesting enough not to require
any such justification. Such a claim has to be supporteé in
the text and not in the introduction; but Chapter 2 attempts
to describe the nature of the main results without too much
technical clutter.

In a little more detail, the book is organized as
follows. The reader is assumed to be quite familiar with
the structure and finite dimensional representation theory
of complex reductive Lie algebras; this is really a pre-
requisite even for understanding the statements of most of
the results. Logically, the book also depends on Harish-
Chandra's basic theory relating growp representations and
Lie algebra representations ([12]) and on his subguotient
theorem ([13]). These topics are treated in [49] or [50],
and the results are summa@ized in Sections 0.3 and 4.1 of
this book. Since the ideas needed to prove them will not
be used here, the reader who is willing to take them on faith
should have little difficulty. The first three sections of

e

Chapter 1 summarize, with some proofs, the representation



xiv

théory of SL(2, IR). Th%g is intended to provide examples as
g&idés to the rather abstract and technical treatment of
the éeneral case. Some results are proved in general by
reduction to SL(Z,JR)t and tﬁe necessary special cases of
th?se are discussed in the rest of Chapter 1.

Chapter 2 contains a detailed statement of the Langlands
classification of irreducible representations of G in a
special case; and a geometric formulation of the conjecture
of Section 9.6 on composition series of standard represen-
tations. (The two formulations are not known to be equi-
valent.) The entire chapter is meant as an extended intro-
duction to the rest of the book.

The main technical tool used here to study representa-
tions is Lie algebra cohomology (of the nil radical of a
parabolic subalgebra, with coefficients in a representation).
Chapter 3 contains two fundamental theorems in that subject:
the Casselman-Osborne theorem relating cohomology and the
- center of the enveloping algebra, and Kostant's formulation
of the Bott-Borel-Weil theorem.

Chapter 4 discusses that part of the classification of
irreducibles which can be obtained from ordinary principal
series representations. In addition to more standard inter-
twining operator technigues, it uses the Bernstein-Gelfand-
Gelfand theory of fine representations (see [2]); a detailed
account of this theory is given in Section 4.3.

Chapters 5 and 6 complete the classification of irredu-
cible representations. The method is discussed in some

detail in the introductions to those chapters. Essentially
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it is a generalization of the highest weight theory of finite
dimensional representations, with highest weight vectors
replaced by a more general kind of cohomology classes for the
representation. The main problem is to find a construction
of representations, generalizing induction, which is nicely
related to cohomology.: This was done (for reductive groups)
by G. Zuckerman (Definition 6.3.1). This book uses only one
special case of this definition, in addition to ordinary .
induction. It seems likely that one can do much more with
the idea.

Chapter 7 is devoted to the Jantzen-Zuckerman "transla-
tion principle" and related matters. This says that all
irreducible reéresentations come in nice families (like the
principal series, or finite dimensional representations).
Many results can therefore be proved by reducing to the
case when the representation is in "general position" in
some sense. This is helpful technically, but the translation
principle plays aﬁﬁéven more fundamental role. Roughly
speaking, it provides a connection between the structure of
irreducible representations, and the combinatorial structure
of the Weyl group. This is discussed more carefully in
Section 7.3; the key result is'Theorem 7«3 9165

In Chapter 8, the basic theorem @n reducibility of
standard representations is proved. This is-in principle
a trivial consequence of the results of Chapter 7, but
requires some messy calculations. (For example, we need the
Hecht-Schmid character identities for discrete series from

[15].) Exactly the same ideas, with the judiciolis addition
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of a technical conjecture (Conjecture 7.3.25), lead to the
algorifﬂh for computing composition series; this is tﬂe con-
tent of Chapter 9.

“The book differs from the existing literature in several.
ways. Most importantly, the standard representations are not
constructed by Langlands' method (that is, ordinary induction‘
from discrete series). We use instead Zuckerman's "cohomo-
logical" induction from principal series. This gives isomor
phic standard representations (Theorem 6.6.15), but that fact
is not proved in the text (or used). As far as the classifi-
cation itself goes, this choice is simply a matter of taste.
However, the conjecture on composition series seems to be
comprehensible only in the realization we have given. (There
is an obvious wayv to try to use ordinary induction, but then
any simple analogue of the critical Theorem 9.5.1 is false.)
This is not to say that Zuckerman's realization is better;
for analytic problems, it is Zuckerman's method which encoun-
ters obstacles:

There aré'ﬁany less substantive changes. What I had
perceived as the main theorem of [42], which relates cohomol-
ogy and U(??)K, does not appear here; the argument has been
rearranged slightly to eliminate the need for it. The defi-
nition of lowest K-type in [42] (Definition 5.4.18 below) has
been replaced by a much more technical one (Definition 5.4.1);
they are eguivalent for irreducibles but not for general
(3;,K) modules. The advantage of the new definition is that

a number of subsequent technical arguments become much sim-

pler when it is used.



xvii

The proof of the Knapp-Stein reducibility theorem
(Corollary 4.4.11) is new, avoiding both the rather delicate
analysis used in [26] and the long case-by-case computation
in the unpublished second part of [42].

The main result about translation "across a wall" is
Theorem 7.3.16; it is (or was) the only non-fornfal part of
the proof of the theorem on reducibility of standard repre -
sentations. About one-third of [39] is devoted to a proof
of it, which might charitably be described as sketchy. A
second proof was given in [45], which was fairly short,. but
used Duflo's main theorem on primitive ideals (see [8]). The
proof given here is entirely trivial; but the result is
labelled as a theorem in memory of [39].

Each chapter begins with an introduction; these provide
a more detailed guide to the main results. Section 9.7 sum-
marizes some open problems.

This book is based on lectures given at MIT dqring the
1979-80 academic year. I would like to thank those who
attended for helpful comments and dogged perseverance. Much
of Chapter 6 is unpublished work of G. Zuckerman. I thank
him for explaining it to me, and allowing it to appear here.
J. Vargas provided a list of errors in the first draft, which
was very helpful. Many people have pointed out particular
errors and shortcomings; I apologize for those which undoubt-
edly remain.

The author was supported in part by a grant from the
National Science Foundation during the preparation of this

book.
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Chapter 0.

Preliminaries

General references for this chapter are [40] and [50].

§1.

Assumptions on G

Notation 0.1.1 Suppose H is a real Lie group. Write

-

identity component of H;

Lie algebra of H;

H + End(.‘o) , the adjoint representation of H;

(-‘ao)¢, the complexification of A

U([/) = universal enveloping algebra of A

K/ is given the complex structure bar, defined by

X+ i¥ = X - iy (X,Y e ,40).

This notation will be applied to groups denoted by other

Roman letters in the same way without comment.

By a real reductive linear group, we will mean a real

Lie group G (not necessarily connected), a maximal compact

subgroup K of G, and an involution 6 of %, satisfying the

following conditions.

(0.1.2)4

a)

b)

c)

d)

e)

70 is a real reductive Lie algebra;

If g € G, the automorphism Ad(g) of ? is inner.
(for the corresponding complex connected group) :
The fixed point set of 6 is 4@0;

Write fo for the -1 eigenspace of 8; then the
map K x 700 +G, (k,X) + k - exp(X) is a diffeo-
moxrphism;

G has a faithful finite dimensional representation;
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f) Let -‘}0 ‘ ?0 be a Cartan subalgebra, and let H be

be the centralizer of-ﬁﬁ in G. Then H is abelian.

3
(Nékice that (d) Zorces G to have only finitely many compo-
nents.)

Throughout this book, G will denote a real reductive

linear group. We will from time to time assume that G satis-
fies additional conditions, but these at least must ?lways be .
met. Conditions (a) - (d) define Harish-Chandra's category
of real reductive groups (cf. [40], §5) and require no fur-
ther justification here; we will use inductive arguments
which lead from connected groups to disconnected ones. . As-
sumption (e) is in some sense only a convenience -- most of
the results we obtain can be gotten without it, although some-
times this requires more work and a less satisfactory formu-
lation of the theorems. However, one of our main goals is

the formulation of the Kazhdan-Lusztig conjectures discussed
in the introduction; and this has not been carried'out for
non-linear groups. (The problems do not seem to be very
deep, but they are quite messy.) Assumption (f) is inciuded
chiefly to make the Knapp-St&in "commutativity of inter-
twining operators" theorem (Corollary 6.5.14) hold. (The
simplest case where it fails has |G/G0[ =4, G, = SL(2, R)

0
X SL(2,IR) ; (a) - (e) are satisfied, but (f) is not.)

Definition 0.1.3 Make 6 an involution of G by setting

0(k » exp(X)) = k « exp(-X) (X ¢ j%, kie K)!w

We call ¢ the Cartan involution of G or :70.




Example 0.1.4

a) G = connected real linear semisimple group;
b) G = GL(n, R), K = 0(n), 68(g) = "¢ %;
c) G = real points of a reductive algebraic group

defined over IR;

d) If Gy is a complex semisimple Lie algebra, and

70 is a real form of its Lie algebra ?, then

G = normalizer in G¢ of %?0;
e) G =SL(2,R) u SL(2, R) - [3 _g];

f) Suppose G is a real reductive linear group, and
H is a f-stable abelian subgroup. Then the centralizer

G"I of H in G is a real reductive linear group.

Of course, these examples overlap enormously. We will make
constaétluse of example (f); its (easy) verification is left
to the reader.

Example (b) illustrates an annoying technical problem;
K need not be a real reductive group. The problem is that
the orthogonal group O(n) does not satisfy (0.1.2) (b). Thus
the Cartan Weyl highest weight theory does not apply directlv
to K; we do not have a priori a perfect grasp on R. This is

circumvented by using the relation between K and G; a descrip-

tion of K is given in Section 5.1.

Definition 0.1.5 A Cartan subgroup of G is the cen-

tralizer in G of a Cartan subalgebra of 37b' A para-

bolic subgroup of G is the normalizer in G of a para-

bolic subalgebra of %7b'



