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Chapter 1
Introduction

Unbeknownst to the majority of algebraists, ultraproducts have been around in
model-theory for more than half a century, since their first appearance in a pa-
per by Los ([65]), although the construction goes even further back, to work of
Skolem in 1938 on non-standard models of Peano arithmetic. Through Kochen’s
seminal paper [61] and his joint work [9] with Ax, ultraproducts also found their
way into algebra. They did not leave a lasting impression on the algebraic com-
munity though, shunned perhaps because there were conceived as non-algebraic,
belonging to the alien universe of set-theory and non-standard arithmetic, a uni-
verse in which most mathematicians did not, and still do not feel too comfortable.

The present book intends to debunk this common perception of ultraprod-
ucts: when applied to algebraic objects, their construction is quite natural, yet
very powerful, and requires hardly any knowledge of model-theory. In particu-
lar, when applied to a collection of rings A,,, where w runs over some infinite
index set W, the construction is entirely algebraic: the ultraproduct of the A,, is
realized as a certain residue ring of the Cartesian product A.. := [TA,, modulo
the so-called null-ideal (see below). Any ring arising in this way will be denoted
Ay, and called an ultra-ring;! and the A,, are then called approximations of this
ultra-ring. As this terminology suggests, we may think of ultraproducts as certain
kinds of limits. This is the perspective of [102], which I will not discuss in these
notes.

Whereas the classical Cartesian product performs a parallel computation, so
to speak, within each A,,, the ultraproduct, on the other hand, computes things
generically: elements in the ultraproduct A satisfy certain algebraic relations if
and only if their corresponding entries satisfy the same relations in the approxima-
tions A, with probability one. To make this latter condition explicit, an ostensibly
extrinsic component has to be introduced: we must impose some (degenerated)
probability measure on the index set W of the family. The classical way is to
choose a (non-principal) ultrafilter on W, and then say that an event holds with
probability one (or, more informally, almost always) if the set of indices for which
it holds belongs to the ultrafilter. Fortunately, the dependence on the choice of

' For the rather unorthodox notation, see below.
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2 1 Introduction

ultrafilter/probability measure turns out to be, for all our intents and purposes,
irrelevant, and so ultraproducts behave almost as if they were intrinsically de-
fined.?

Once we have chosen a (non-principal) ultrafilter, we can define the ultraprod-
uct Ay as the residue ring of the Cartesian product A.. := [],,A,, modulo the
null-ideal of almost zero elements, that is to say, those elements in the product
almost all of whose entries are zero. However, we can make this construction
entirely algebraic, without having to rely on an ultrafilter/probability measure
(although the latter perspective is more useful when we have to prove things about
ultraproducts). Namely, A.. carries naturally the structure of a Z..-algebra, where
Z is the corresponding Cartesian power of the ring of integers Z. Given any
minimal prime ideal P in Z., the base change Ay := A../BA is an ultra-ring
(with corresponding null-ideal PA..). Moreover, all possible ultraproducts of the
A, arise in this way (see §2.5). Principal null-ideals, corresponding to principal
ultrafilters, have one of the A, as residue rings, and therefore are of little use.
Hence from now on, when talking about ultra-rings, we always assume that the
null-ideal is not principal—it follows that it is then infinitely generated—and this
is equivalent with the ultrafilter containing all co-finite subsets, and also with P
containing the direct sum ideal @ Z. Perhaps even more surprisingly familiar is
the alternative definition given in §2.6 (communicated to me by Macintyre): an
ultra-ring is simply a stalk at a point x of a sheaf of rings on a Boolean scheme,
where a scheme is called Boolean if each residue field is isomorphic to IF, (and the
null-ideal is non-principal if and only if the prime ideal of x is infinitely generated).

I already alluded to the main property of ultraproducts: they have the same
(first-order) properties than almost all their approximations A,,; this is known
to model-theorists as Los’ Theorem. Although it may not always be easy to de-
termine whether a property carries over, that is to say, is first-order, this is the
case if it is expressible in arithmetic terms. Arithmetical here refers to algebraic
formulas between ring elements, ‘first-order objects,” but not between ‘higher-
order objects,’ like ideals or modules. For instance, properties such as being a
domain, reduced, normal, local, or Henselian, are easily seen to be preserved.
Among those that do not carry over, is, unfortunately, the Noetherian property.
Ultra-rings, therefore, are hardly ever Noetherian; the ultraproduct construction
takes us outside our category! In particular, tools from commutative algebra seem
no longer applicable. However, as we will show, there is still an awful lot, espe-
cially in the local case, that does carry through, with a few minor adaptations
of the definitions. In fact, we will introduce two variant constructions that are
designed to overcome altogether this obstacle. I have termed these chromatic prod-
ucts, for they, too, are denoted using musical notation: the protoproduct A,, and
the cataproduct A;. The latter is defined as soon all A,; are Noetherian local rings
of bounded embedding dimension (that is to say, whose maximal ideal is gener-

2This does not mean that ultraproducts of the same rings, but with respect to different ultrafil-
ters, are necessarily isomorphic.



1 Introduction 3

ated by n elements, for some n independent from w). Its main advantage over the
ultraproduct itself, of which it is a further residue ring, is that a cataproduct is
always Noetherian and complete. To define protoproducts, we need some addi-
tional data on the approximations, namely, some uniform grading, analogous to
polynomial degree. Although protoproducts do not need to be Noetherian, they
often are. In case both are defined, we get a chromatic scale of homomorphisms
A, — Ay — Ay

However, as we shall see, it is in combination with certain flatness results that
ultraproducts, and more generally chromatic products, acquire their real power.
Already in their 1984 paper [86], Schmidt and van den Dries observed how a cer-
tain flatness property of ultraproducts, discovered five years prior to this by van
den Dries in [25], translates into the existence of uniform bounds in polynomial
rings (see our discussion in §4.2). This paper was soon followed by others exploit-
ing this new method: [11,23,84]. The former two papers brought in a third theme
that we will encounter in this book on occasion: Artin Approximation (see §7.1).
So germane to almost every single application of ultraproducts is flatness, that I
have devoted a separate chapter, Chapter 3, to it. It contains several flatness re-
sults, old and new,’ that will be of use later in the book. Prior to this chapter,
I introduce first our main protagonist, the ultra-ring, and prove some elemen-
tary facts. Noteworthy is a model-theoretic version of the Letschetz Principle,
Theorem 2.4.3, which will provide the basis of most transfer results from pos-
itive to zero characteristic: we may realize the field of complex numbers as an
ultraproduct of fields of positive characteristic!

The subsequent chapters—except for Chapter 5, which is a brief survey
on classical tight closure theory—then contain deeper results and proper-
ties of ultrarings. Since an ultraproduct averages or captures the generic
behavior of its approximations, it should not come as a surprise that as a
tool, it is particularly well suited to derive uniformity results. This is done
in Chapter 4, whose material is both thematically and chronologically the
closest to its above mentioned paradigmatic forebear [86]. A second, more
profound application of the method to commutative algebra is described
in Chapters 6 and 7: we use ultraproducts to give an alternative treatment
of tight closure theory in characteristic zero. Tight closure theory, intro-
duced by Hochster and Huneke in an impressive array of beautiful articles—
[47,48,50,53,51], to name only a few—is an extremely powerful tool, which relies
heavily on the algebraicity of the Frobenius in positive characteristic, and as such
is primarily a positive characteristic tool. Without going into details (these can
be found in Chapter 5), one associates, using the p-th power Frobenius homo-
morphisms, to any ideal a in a ring of characteristic p > 0, its tight closure a*, an
overideal contained in the integral closure of a, but often much closer or “tighter”
to the original a. What really attracted people to the method was not only the

3 Some of the well-known criteria are given here with a new proof; see, for instance, §3.3.6 on
the Local Flatness Criterium.



4 1 Introduction

apparent ease with which deep, known results could be reproved, but also its
new, and sometimes unexpected applications, both in commutative algebra and
algebraic geometry, derived almost all by means of fairly elementary arguments.

Although essentially a positive characteristic method, its authors also con-
ceived of tight closure theory in characteristic zero in [54], by a generic reduction
to positive characteristic. In fact, this reduction method, using Artin Approxi-
mation, as well as the method in positive characteristic itself were both inspired
by the equally impressive work of Peskine and Szpiro [75] on Intersection Conjec-
tures, and Hochster’s own early work on big Cohen-Macaulay modules ([56]) and
homological conjectures (43,44]). However, to develop the method in characteris-
tic zero some extremely deep results on Artin Approximation* were required, and
the elegance of the positive characteristic method was entirely lost. No wonder! In
characteristic zero, there is no Frobenius, nor any other algebraic endomorphism
that could take over its role. To the rescue, however, come our ultraproducts.
Keeping in mind that an ultraproduct is some kind of averaging process, it follows
that the ultraproduct of rings of different positive characteristic is an ultra-ring of
characteristic zero, for which reason we call it a Lefschetz ring. Furthermore, the
ultraproduct of the corresponding Frobenius maps—one of the many advantages
of ultraproducts, they can be taken of almost anything!—yields an ultra-Frobenius
on this Lefschetz ring. Notwithstanding that it is no longer a power map, this
ultra-Frobenius can easily fulfill the role played by the Frobenius in the positive
characteristic theory. The key observation now is that many rings of characteris-
tic zero—for instance, all Noetherian local rings, and all rings of finite type over
a field—embed in a Lefschetz ring via a faithfully flat homomorphism. Flatness
is essential here: it guarantees that the embedded ring preserves its ideal structure
within the Lefschetz ring, which makes it possible to define the tight closure of
its ideals inside that larger ring. In this manner, we can restore the elegant argu-
ments from the positive characteristic theory, and prove the same results with the
same elegant arguments as before. The present theory of characteristic zero tight
closure is the easiest to develop for rings of finite type over an algebraically closed
field, and this is explained in Chapter 6. The general local case is more compli-
cated, and does require some further results on Artin Approximation, although
far less deep than the ones Hochster and Huneke need for their theory. In fact,
conversely, one can deduce certain Artin Approximation results from the fact that
any Noetherian local ring has a faithfully flat Lefschetz extension (see in partic-
ular §7.1.4). Chapter 7 only develops the parts necessary to derive all the desired
applications; for a more thorough treatment, one can consult [6].

In a parallel development, Hochster and Huneke’s work on tight closure also
led them to their discovery of canonically defined, big balanced Cohen-Macaulay
algebras in positive characteristic: any system of parameters in a excellent local
domain of positive characteristic becomes a regular sequence in the absolute
integral closure of the ring. The same statement is plainly false in characteristic

* The controversy initially shrouding these results is a tale on its own.



1 Introduction 5

zero, and the authors had to circumvent this obstruction again using complicated
reduction techniques. Using ultraproducts, one constructs, quite canonically, big
balanced Cohen-Macaulay algebras in characteristic zero simply by (faithfully
flatly) embedding the ring inside a Lefschetz ring and then taking the ultraprod-
uct of the absolute integral closures of the positive characteristic approximations
of this Lefschetz ring. With aid of these new techniques, I was able to give new
characterizations of rational and log-terminal singularities. Furthermore, exploit-
ing the canonical properties of the ultra-Frobenius, I succeeded in settling some of
the conjectures that hitherto had remained impervious to tight closure methods.
All these results, unfortunately, fall outside the scope of this book, and the reader
is referred to the articles [94,95,99], or to the survey paper [100].

The next two chapters, Chapter 8 on cataproducts, and Chapter 9 on proto-
products, develop the theory of the chromatic products mentioned already above.
Most of the applications are on uniform bounds. For instance, we discuss some
of the characterizations from [101] of several ring-theoretic properties of Noethe-
rian local rings, such as being analytically unramified, Cohen-Macaulay, unmixed,
etc., in terms of uniform behavior of two particular ring-invariants: order (with
respect to the maximal ideal) and degree. This latter invariant measures to which
extent an element is a parameter of the ring, and is a spin-off of our analysis of
the dimension theory for ultra-rings (Krull dimension is one of the many invari-
ants that are not preserved under ultraproducts, requiring a different approach via
systems of parameters). Protoproducts, on the other hand, are designed to study
rings with a generalized grading, called proto-grading, and most applications are
again on uniform bounds in terms of these. This is in essence a formalization of
the method coming out of the aforementioned [86).

In the last chapter, we discuss some open problems, commonly known as homo-
logical conjectures. Whereas these are now all settled in equal characteristic, either
by the older methods, or by the recent tight closure methods, the case when the
Noetherian local ring has different characteristic than its residue field, the mixed
characteristic case, is for the most part still wide open (other than the recent break-
through in dimension three by Heitman [40] and Hochster [46]). We will settle
some of them, at least asymptotically, meaning, for large enough residual char-
acteristic. This is still far from a complete solution, and our asymptotic results
would only gain considerable interest if the actual conjectures turned out to be
false. The method is inspired by Ax and Kochen’s solution of a problem posed
by Artin about Cs-fields, historically the first application of ultraproducts outside
logic (see §10.1.2). Their main result, generalized latter by Ershov (29,30]), is that
an ultraproduct of mixed characteristic discrete valuation rings of different resid-
ual characteristics is isomorphic to an ultraproduct of equal characteristic discrete
valuation rings. So, we can transfer results from equal characteristic, the known
case, to results in mixed characteristic. However, the fact that properties only hold
with probability one in an ultraproduct accounts for the asymptotic nature of our
results. In §10.3, I propose a variant method, using cataproducts instead. Here
the asymptotic nature can also be expressed in terms of the ramification index,
that is to say, the order of the residual characteristic, rather than just the residual
characteristic itself. Although this gives often more general results, in terms of
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more natural invariants, some of the homological problems still elude treatment.
We conclude with a result, Theorem 10.3.7, showing how these asymptotic results
could nonetheless lead to a positive solution of the corresponding full conjecture,
provided we understand the growth rate of these uniform bounds better.

This book also includes two appendices, which contain some applications of
the present theory, but also some material used at various points in the main
text. Appendix A gives a new construction for the Henselization of a Noetherian
local ring. The constructive nature of the process allows us then to define a proto-
grading on this Henselization, called the etale proto-grade, and apply the theory
from Chapter 9 to the ring of algebraic power series rings. Appendix B discusses
Boolean rings and some of their generalizations (J-rings, n-Boolean and w-Boolean
rings, periodic rings). In particular, we prove, by means of ultraproducts, some
representation theorems analogous to Stone’s theorem for Boolean rings, which
seem to have been unnoticed hitherto.

Notations and Conventions We follow the common conventionto let N, Z, Z,,
Q, Qp, R, and C denote respectively, the natural numbers, the integers, the ring
of p-adic integers, the field of rational, of p-adic, of real, and of complex numbers.
The g-element field, for g a power of a prime number p, will be denoted F,;

its algebraic closure is denoted lF‘;,Ig. The complement of a set D C W is denoted
—D, and more generally, the difference between two subsets D,E C W is denoted
D—-E.

All rings are assumed to be commutative. More often than not, the image of an
element a € A under a ring homomorphism A — B is still denoted a. In particular,
IB denotes the ideal generated by the images of elements in the ideal / C A, and
JNA denotes the ideal of all elements in A whose image lies in the ideal J C B.



Chapter 2
Ultraproducts and Los’ Theorem

In this chapter, W denotes an infinite set, always used as an index set, on which
we fix a non-principal ultrafilter.! Given any collection of (first-order) structures
indexed by W, we can define their ultraproduct. However, in this book, we will
be mainly concerned with the construction of an ultraproduct of rings, an ultra-
ring for short, which is then defined as a certain residue ring of their Cartesian
product. From this point of view, the construction is purely algebraic, although
it is originally a model-theoretic one (we only provide some supplementary back-
ground on the model-theoretic perspective). We review some basic properties
(deeper theorems will be proved in the later chapters), the most important of
which is Lo§” Theorem, relating properties of the approximations with their ul-
traproduct. When applied to algebraically closed fields, we arrive at a result that
is pivotal in most of our applications: the Lefschetz Principle (Theorem 2.4.3),
allowing us to transfer many properties between positive and zero characteristic.

2.1 Ultraproducts

We start with the classical definition of ultraproducts via ultrafilters; for different
approaches, see §§2.5 and 2.6 below.

2.1.1 Ultrafilters

By a (non-principal) ultrafilter 2 on W, we mean a collection of infinite subsets of
W closed under finite intersection, with the property that for any subset D C W,
either D or its complement —D belongs to 20. In particular, the empty set does
not belong to 2, and if D € 20 and E is an arbitrary set containing D, then also

I'We will drop the adjective ‘non-principal’ since these are the only ultrafilters we are interested
in; if we want to talk about principal ones, we just say principal filter; and if we want to talk
about both, we say maximal filter.

H. Schoutens, The Use of Ultraproducts in Commutative Algebra, 7
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8 2 Ultraproducts and Los’ Theorem

E € 20, for otherwise —E € 20, whence ® = DN —E € 20, contradiction. Since
every set in 20 must be infinite, it follows that any co-finite set belongs to 20.
The existence of ultrafilters follows from the Axiom of Choice, and we make this
set-theoretic assumption henceforth. It follows that for any infinite subset of W,
we can find an ultrafilter containing this set.

More generally, a proper collection of subsets of W is called a filter if it is closed
under intersection and supersets. Any ultrafilter is a filter which is maximal with
respect to inclusion. If we drop the requirement that all sets in 20 must infinite,
then some singleton must belong to 20; such a filter is called principal, and these
are the only other maximal filters. A maximal filter is an ultrafilter if and only if it
contains the Frechet filter consisting of all co-finite subsets (for all these properties,
see for instance [81, §4] or [57, §6.4]).

In the remainder of these notes, unless stated otherwise, we fix an ultrafilter
20 on W, and (almost always) omit reference to this fixed ultrafilter from our
notation. No extra property of the ultrafilter is assumed, with the one exception
described in Remark 8.1.5, which 1s nowhere used in the rest of our work anyway.
Ultrafilters play the role of a decision procedure on the collection of subsets of W
by declaring some subsets ‘large’ (those belonging to 20) and declaring the remain-
ing ones ‘small’. More precisely, let 0,, be elements indexed by w € W, and let 22
be a property. We will use the expressions almost all o,, satisfy property 2 or o,
satisfies property P for almost all w as an abbreviation of the statement that there
exists a set D in the ultrafilter 20, such that property 2 holds for the element o,,,
whenever w € D. Note that this is also equivalent with the statement that the set
of all w € W for which o,, has property 2, lies in the ultrafilter (read: is large).

2.1.2 Ultraproducts

Let O,, be sets, for w € W. We define an equivalence relation on the Cartesian
product O := [] O, by calling two sequences (a,) and (b)), for w € W, equiv-
alent, if a,, and b,, are equal for almost all w. In other words, if the set of indices
w € W for which a,, = b,, belongs to the ultrafilter. We will denote the equivalence
class of a sequence (ay) by

ulima,., or ulima,, or a.

w00

The set of all equivalence classes on [TO,, is called the ultraproduct of the O, and
is denoted
ulimO,,, or ulimO,., or O;.

W00

If all O,, are equal to the same set O, then we call their ultraproduct the ultrapower
O, of 0. There is a canonical map O — Oy, sometimes called the diagonal embed-
ding, sending an element o to the image of the constant sequence o0 in Oy. To see
that it is an injection, assume o’ has the same image as 0 in O,. This means that
for almost all w, and hence for at least one, the elements 0 and o’ are equal.
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Note that the element-wise and set-wise notations are reconciled by the fact

that
ulim{o,} = {ulimo,.}.
W00 W00

The more common notation for an ultraproduct one usually finds in the literature
is O%; in the past, I also have used O.., which in this book is reserved to denote
Cartesian products. The reason for using the particular notation Oy in these notes
is because we will also introduce the remaining chromatic products O, and Oy (at
least for certain local rings; see Chapters 9 and 8 respectively).

We will also often use the following terminology: if o is an element in an
ultraproduct Oy, then any choice of elements 0,, € O, with ultraproduct equal to
o will be called an approximation of o. Although an approximation is not uniquely
determined by the element, any two agree almost everywhere. Below we will
extend our usage of the term approximation to include other objects as well.

2.1.3 Properties of Ultraproducts

For the following properties, the easy proofs of which are left as an exercise, let
O, be sets with ultraproduct O.

2.1.1 If Q,, is a subset of O,, for each w, then ulim Q,,. is a subset of Oy,
In fact, ulim Q,, consists of all elements of the form ulimo,,, with almost all 0,
in Q.

2.1.2 If each O,, is the graph of a function f.: A, — B, then Oy is the graph of
a function Ay — By, where Ay and By are the respective ultraproducts of A,
and B,,. We will denote this function by

ulimf,. or fy.

W00

Moreover, we have an equality

ulim(f.(a,)) = (ulim f,,)(ulima,,), 2.1
W00 W00 W—s00
fora, € Ay.
2.1.3 Ifeach O,, comes with an operation *,.: O, x O,. — O,,, then

kp 1= ulima,,

W00
is an operation on Oy. If all (or, almost all) O, are groups with multipli-
cation *,, and unit element 1, then Oy is a group with multiplication *,

and unit element 1y := ulim 1,,. If almost all O,, are Abelian groups, then
50 15 Oy,



