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Preface

L-functions are important objects in modern number theory. They are gener-
ating functions formed out of local data associated with either an arithmetic
object or with an automorphic form. They can be attached to smooth pro-
jective varieties defined over number fields, to irreducible (complex or p-adic)
representations of the Galois group of a number field, to a cusp form or to
an irreducible cuspidal automorphic representation. All the L-functions have
in common that they can be described by an Euler product, i.e., a product
taken over prime numbers. In view of the unique prime factorization of integers
L-functions also have a Dirichlet series representation. The famous Riemann
zeta-function

<(s)=§:,,% = 11 (lpl>l

n=1 p prime

may be regarded as the prototype. L-functions encode in their value-
distribution information on the underlying arithmetic or algebraic structure
that is often not obtainable by elementary or algebraic methods. For instance,
Dirichlet’s class number formula gives information on the deviation from
unique prime factorization in the ring of integers of quadratic number fields
by the values of certain Dirichlet L-functions L(s,x) at s = 1. In particu-
lar, the distribution of zeros of L-functions is of special interest with respect
to many problems in multiplicative number theory. A first example is the
Riemann hypothesis on the non-vanishing of the Riemann zeta-function in
the right half of the critical strip and its impact on the distribution of prime
numbers. Another example are L-functions L(s, F) attached to elliptic curves
E defined over Q. The yet unproved conjecture of Birch and Swinnerton-Dyer
claims that L(s, F) has a zero at s = 1 whose order is equal to the rank of
the Mordell-Weil group of the elliptic curve E.

These notes present recent results in the value-distribution theory of such
L-functions with an emphasis on the phenomenon of universality. The starting
point of this theory is Bohr’s achievement at the first half of the twentieth
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century. He proved denseness results and first limit theorems for the values of
the Riemann zeta-function. Maybe the most remarkable result concerning the
value-distribution of {(s) is Voronin’s universality theorem from 1975, which
roughly states that any non-vanishing analytic function can be approximated
uniformly by certain shifts of the zeta-function in the critical strip. More
precisely: let 0 < r < % and suppose that g(s) is a non-vanishing continuous
function on the disc |s| < r which is analytic in its interior. Then, for any
e > 0, there exists a real number T such that

. 3 .
¢ (.s' + 1 + ]T> —g(s)

moreover, the set of these T has positive lower density:

3
C<s+ 1 +iT> —g(s)| < 6} > 0.

This is a remarkable property! We say that ((s) is universal since it allows
uniform approximation of a large class of functions. Voronin’s universality
theorem, in a spectacular way, indicates that Riemann’s zeta-function is a
transcendental function; clearly, rational functions cannot be universal. In
some literature the validity of the Riemann hypothesis for abelian varieties
(proved by Hasse for elliptic curves and by Weil in the general case) is regarded
as evidence for the truth of Riemann’s hypothesis for ((s). However, the
zeta-function of an abelian variety is a rational function and so its value-
distribution is of a rather different type.

The Linnik Ibragimov conjecture asserts that any Dirichlet series (which
has a sufficiently rich value-distribution) is universal. Meanwhile we know
quite many universal Dirichlet series; for instance, Dirichlet L-functions
(Voronin, 1975), Dedekind zeta-functions (Reich, 1980), Lerch zeta-functions
(Laurinc¢ikas, 1997), and L-functions associated with newforms (Laurincikas.
Matsumoto and Steuding, 2003). One aim of these notes is to prove an exten-
sion of Voronin’s universality theorem for a large class of L-functions which
covers (at least conjecturally) all known L-functions of number-theoretical
significance.

These notes are organized as follows. In the introduction, we give an
overview on the value-distribution theory of the classical Riemann zeta-
function and Dirichlet L-functions; also we touch some allied zeta-functions
which we will not consider in detail in the following chapters. In Chap. 2.
we introduce a class S of Dirichlet series, satisfying certain analytic and
arithmetic axioms. The members of this class are the main actors in the
sequel. Roughly speaking, an L-function in S has a polynomial Euler product
and satisfies some hypothesis which may be regarded as some kind of prime
number theorem; besides, we require analytic continuation to the left of
the half-plane of absolute convergence for the associated Dirichlet series in
addition with some growth condition. The axioms defining S are kept quite

max < €

[s|<r

1
liminf — meas < 7 € [0.7] : max
TILQ T > { [ ] Is|<r
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general and therefore they may appear to be rather abstract and technical;
however, as we shall discuss later for many examples (in Chaps. 6, 12 and
13), they hold (or at least they are expected to hold) for all L-functions of
number theoretical interest. This abstract setting has the advantage that we
can derive a rather general universality theorem.

Our proof of universality, in the main part, relies on Bagchi’s probabilistic
approach from 1981. For the sake of completeness we briefly present in Chap. 3
some basic facts from probability theory and measure theory. In Chap. 4, we
prove along the lines of Laurin¢ikas’ extension of Bagchi’s method a limit
theorem (in the sense of weakly convergent probability measures) for functions
in the class S. In the following chapter we give the proof of the main result, a
universality theorem for L-functions in S. The proof depends on the limit theo-
rem of the previous chapter and the so-called positive density method, recently
introduced by Laurin¢ikas and Matsumoto to tackle L-functions attached to
cusp forms. Furthermore, we discuss the phenomenon of discrete universality:
here the attribute discrete means that the shifts 7 are taken from arithmetic
progressions. This concept of universality was introduced by Reich in 1980.

In Chap.6, we introduce the Selberg class S consisting of Dirichlet
seriecs with Euler product and a functional equation of Riemann-type (and
a bit more). It is a folklore conjecture that the Selberg class consists of all
automorphic L-functions. We study basic facts about S and discuss the main
conjectures, in particular, the far-reaching Selberg conjectures on primitive
elements. We shall see that the class S fits rather well into the setting of
the Selberg class S (especially with respect to Selberg’s conjectures). Hence,
our general universality theorem extends to the Selberg class, unconditionally
for many of the classical L-function and conditionally to all elements of S
subject to some widely believed but rather deep conjectures. However, the
Selberg class is too small with respect to universality; for instance, a Dirichlet
L-function to an imprimitive character does not lie in the Selberg class (by
lack of an appropriate functional equation) but it is known to be universal.
Furthermore, some important L-functions are only conjectured to lie in the
Selberg class, and, in spite of this, for some of them we can derive universality
unconditionally.

In the following chapter, we consider the value-distribution of Dirichlet
series £(s) with functional equation in the complex plane. Following Levin-
son’s approach from the 1970s, we shall prove asymptotic formulae for the
c-values of L, i.e., roots of the equation L(s) = ¢, and give applications in
Nevanlinna theory. In particular, we give an alternative proof of the Riemann-
von Mangoldt formula for the elements in the Selberg class.

The main themes of Chap.8 are almost periodicity and the Riemann
hypothesis. Universality has an interesting feedback to classical problems.
Bohr observed that the Riemann hypothesis for Dirichlet L-functions asso-
ciated with non-principal characters is equivalent to almost periodicity in
the right half of the critical strip. Applying Voronin’s universality theorem,
Bagchi was able to extend this result to the zeta-function in proving that if
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the Riemann zeta-function can approximate itself uniformly in the sense of
Voronin’s theorem, then Riemann’s hypothesis is true, and vice versa. We
sketch an extension of Bagchi’s theorem to other L-functions.

Chapter 9 deals with the problem of effectivity. The known proofs of uni-
versality are ineffective, giving neither bounds for the first approximating shift
7 nor for their density (with the exception of particular results due to Garunk-
stis. Good, and Laurin¢ikas). We give explicit upper bounds for the density
of universality; more precisely, we prove upper bounds for the frequency with
which a certain class of target functions (analytic isomorphisms) can be uni-
formly approximated. Moreover, we apply effective results from the theory of
inhomogeneous diophantine approximation to prove several explicit estimates
for the value-distribution in the half-plane of absolute convergence.

In Chap. 10, we discuss further applications of universality, most of them
classical, e.g., an extension of Bohr’s and Voronin’s results concerning the
value-distribution inside the critical strip, and the functional independence
which covers Ostrowski’s solution of the Hilbert problem on the hyper-
transcendence of the zeta-function and some of its generalizations. Here a
function is called hyper-transcendental, if it does not satisfy any algebraic
differential equation. Further, we study the value-distribution of linear com-
binations of (strongly) universal Dirichlet series. A subtle consequence of this
strong concept of universality, and a big contrast to L-functions, can be found
in the distribution of zeros off the critical line. Very likely a (universal) Dirich-
let series satisfying a functional equation of Riemann-type has either many
zeros to the right of the critical line (as a generic Dirichlet series with periodic
coefficients) or none (as it is expected for L-functions). This seems to be the
heart of many secrets in the value-distribution theory of Dirichlet series.

Chapter 11 deals with Dirichlet series associated with periodic arithmeti-
cal functions. In general, these functions do not have an Euler product but
they are additively related to Dirichlet L-functions. Consequently, they share
certain properties with L-functions, e.g., a functional equation similar to the
one for Riemann’s zeta-function. We prove universality for a large class of
these Dirichlet series; in contrast to L-functions they can approximate uni-
formly analytic functions having zeros (provided their Dirichlet coeflicients are
not multiplicative). Moreover, we study joint universality for Hurwitz zeta-
functions with rational parameters.

We conclude with joint universality: here joint stands for simultaneous
uniform approximation. In Chap. 12, we prove a theorem which reduces joint
universality for L-functions in S to a denseness property in a related function
space. Of course, we cannot have joint universality for any set of L-functions:
for example, ((s) and ((s)? cannot approximate any given pair of admissi-
ble target functions simultaneously. However, we shall prove that in some
instances twists of £ € S with pairwise non-equivalent characters fulfill this
condition (e.g., Dirichlet L functions). In the following chapter we present sev-
cral further applications. For instance, we prove joint universality for Artin
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L-functions (which lie in the Selberg class if and only if the deep Artin con-
jecture is true). This universality theorem holds unconditionally despite the
fact that Artin L-functions might have infinitely many poles in their strip of
universality; this was first proved by Bauer in 2003 by a tricky argument.

At the end of these notes an appendix on the history of the general phe-
nomenon of universality in analysis is given. It is known that universality is a
quite regularly appearing phenomenon in limit processes, but among all these
universal objects only universal Dirichlet series are explicitly known. At the
end an index and a list of the notations and axioms which were used are given.

Value-distribution theory for L-functions with emphasis on aspects of uni-
versality was treated in the monographs of Karatsuba and Voronin [166] and
Laurincikas [186]. However, after the publication of these books, many new
results and applications were discovered; we refer the reader to the surveys of
Laurincikas [196] and of Matsumoto [242] for some of the progress made in the
meantime. The content of this book forms an extract of the authors habilita-
tion thesis written at Frankfurt University in 2003. We have added Chaps. 12
and 13 on joint universality and its applications as well as several remarks
and comments concerning the progress obtained in the meantime. Unfortu-
nately, we could not include the most current contributions as, for example,
the promising work [245] of Mauclaire which relates universality with almost
periodicity.

I am very grateful to Springer for publishing these notes; especially, I want
to thank Stefanie Zoller and Catriona M. Byrne from Springer, the editors of
the series Lecture Notes in Mathematics, and, of course, the anonymous referees
for their excellent work, their valuable remarks and corrections. Furthermore,
I am grateful to my family, my friends and my colleagues for their interest
and support, in particular those from the Mathematics Departments at the
universities of Frankfurt, Madrid, and Wiirzburg. Especially, I would like to
thank Ramunas Garunkstis and Antanas Laurin¢ikas for introducing me to
questions concerning universality, Ernesto Girondo, Aleksander Ivi¢, Roma
Kacinskaité, Kohji Matsumoto, Georg Johann Rieger, Jiirgen Sander, Wolf-
gang Schwarz, and Jiirgen Wolfart for the fruitful discussions, helpful remarks
and their encouragement. Last but not least, I would like to thank my wife
Rasa.

Jorn Steuding
Wiirzburg, December 2006
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1

Introduction

The grandmother of all zeta-functions is the Riemann zeta-function.
David Ruelle

In this introduction we give some hints for the importance of the
Riemann zeta-function for analytic number theory and present first classic
results on its amazing value-distribution due to Harald Bohr but also the re-
markable universality theorem of Voronin (including a sketch of his proof).
Moreover, we introduce Dirichlet L-functions and other generalizations of the
zeta-function, discuss their relevance in number theory and comment on their
value-distribution. For historical details we refer to Narkiewicz’s monograph
|277] and Schwarz’s surveys [317, 318|.

1.1 The Riemann Zeta-Function and the Distribution
of Prime Numbers

The Riemann zeta-function is a function of a complex variable s = o + it, for
o > 1 given by

o0

C(S):Z$: <1—%>-1; (1.1)

n=1 P

here and in the sequel the letter p always denotes a prime number and the
product is taken over all primes. The Dirichlet series, and the Euler product,
converge absolutely in the half-plane ¢ > 1 and uniformly in each compact
subset of this half-plane. The identity between the Dirichlet series and the
Euler product was discovered by Euler [76] in 1737 and can be regarded as
an analytic version of the unique prime factorization of integers. The Euler
product gives a first glance on the intimate connection between the zeta-
function and the distribution of prime numbers. A first immediate consequence
is Euler’s proof of the infinitude of the primes. Assuming that there were only
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finitely many primes, the product in (1.1) is finite, and therefore convergent
for s = 1, contradicting the fact that the Dirichlet series defining ((s) reduces
to the divergent harmonic series as s — 1+. Hence, there exist infinitely many
prime numbers. This fact is well known since Euclid’s elementary proof, but
the analytic access gives deeper knowledge on the distribution of the prime
numbers. It was the young Gauss [94] who conjectured in 1791 for the number
7(x) of primes p < z the asymptotic formula

w(z) ~ li(x), (1.2)

where the logarithmic integral is given by

L—e z
li(z) = lim / / = / du 1.04...;
e—0+ log u Jy logu

this integral is a principal value in the sense of Cauchy. Gauss’ conjecture
s‘tates that, in first approximation, the number of primes < z is asymptotically
l%l By elementary means, Chebyshev [54, 55| proved around 1850 that for
sufficiently large x

log

0.921... < m(x) < 1.055....

Furthermore, he showed that if the limit

log x

lim 7(z)
r—00 xr
exists, the limit is equal to one, which supports relation (1.2).

Riemann was the first to investigate the Riemann zeta-function as a func-
tion of a complex variable. In his only one but outstanding paper [310] on
number theory from 1859 he outlined how Gauss’ conjecture could be proved
by using the function ((s). However, at Riemann’s time the theory of func-
tions was not developed sufficiently far, but the open questions concerning
the zeta-function pushed the research in this field quickly forward. We shall
briefly discuss Riemann’s memoir. First of all, by partial summation

1 les Tyl — 1
)= —+—+ 5/ [:’}m” du (1.3)
N J

ns s—1
n<N

here and in the sequel [u] denotes the maximal integer less than or equal to w.
This gives an analytic continuation for ((s) to the half-plane o > 0 except for
a simple pole at s = 1 with residue 1. This process can be continued to the
left half-plane and shows that ((s) is analytic throughout the whole complex
plane except for s = 1. Riemann gave the functional equation

*)¢(s) = n~0=072r (1 - ) C1-s), (1.4)

7T7S/2F(
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0.1

Fig. 1.1. {(s) in the range s € [~14.5,0.5]

where [I'(s) denotes Euler's Gamma-function; it should be noted that
Euler [76] had partial results in this direction (namely, for integral s and
for half-integral s; see |7]). In view of the Euler product (1.1) it is easily seen
that ((s) has no zeros in the half-plane o > 1. It follows from the functional
equation and from basic properties of the Gamma-function that {(s) vanishes
in o < 0 exactly at the so-called trivial zeros s = —2n with n € N (see Fig. 1.1
for the first trivial zeros). All other zeros of ((s) are said to be non-trivial,
and we denote them by o = 3 + iy. Obviously, they have to lie inside the
so-called critical strip 0 < o < 1, and it is easily seen that they are non-real.
The functional equation (1.4), in addition with the identity

((3) = ((s),

shows some symmetries of ((s). In particular, the non-trivial zeros of ((s) arc
distributed symmetrically with respect to the real axis and to the vertical line
g = % It was Riemann’s ingenious contribution to number theory to point
out how the distribution of these non-trivial zeros is linked to the distribution
of prime numbers. Riemann conjectured that the number N(7') of non-trivial
zeros p = 3+ 1y with 0 < v < T (counted according multiplicities) satisfies
the asymptotic formula

. T
N(T) ~ o log oo

This was proved in 1895 by von Mangoldt [235, 236] who found more precisely

T T

Riemann worked with the function ¢ +— ( (% + it) and wrote that very likely
all roots ¢ are real, i.e., all non-trivial zeros lie on the so-called critical lince
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-4

20

30

40

Fig. 1.2. The reciprocal of the absolute value of ((s) for o € [—4,4],t € [—10,40].
The zeros of ((s) appear as poles

G = % This is the famous, yet unproved Riemann hypothesis which we rewrite
equivalently as
Riemann’s Hypothesis. ((s) # 0 for o > %

[n support of his conjecture, Riemann calculated some zeros: the first onc
with positive imaginary part is p = % +114.134 ... (see Fig.1.2 and also

Fig.8.1).* Furthermore, Riemann conjectured that there exist constants A

and B such that
1 N S\ . S
Es(s — 1) —s2p (5) ((s) = exp(A + B.s')H (1 - 5) exp < ) .
This was shown by Hadamard [113] in 1893 (recall the Hadamard product

)
theorem from the theory of functions). Finally, Riemann conjectured the so-
called explicit formula which states that

| ®

* In 1932, Siegel [329] published an account of Riemann’s work on the zeta-function
found in Riemann’s private papers in the archive of the university library in
Gottingen. It became evident that behind Riemann’s speculation there was
extensive analysis and computation.
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oo a(zl/m
)+ Y e ) iy — 3 (li(@?) + li(a'~?)) (1.6)

n=2 e=p+iy
¥>0

+/)c i log 2
— o
L+ u(u?—1)logu &

for any x > 2 not being a prime power (otherwise a term sz has to be added on
the left-hand side, where 2 = p*); the appearing integral logarithm is defined
by

(B+iv) log «
2 exp(z
li(zP+17) = / P(2) 4,
J(—oo+iy)logx < + oiy

where 0 = +1if 4 > 0 and § = —1 otherwise. The explicit formula was proved
by von Mangoldt |235] in 1895 as a consequence of both product representa-
tions for ((s), the Euler product (1.1) on the one hand and the Hadamard
product on the other hand.

Riemann’s ideas led to the first proof of Gauss’ conjecture (1.2), the cel-
chrated prime number theorem, by Hadamard [114] and de la Vallée-Poussin
|357] (independently) in 1896. We give a very brief sketch (for the details we
refer to Ivié [141]). For technical reasons it is of advantage to work with the
logarithmic derivative of ((s) which is for o > 1 given by

=324

n=1

~

N

~ |

where the von Mangoldt A-function is defined by

A(n) = {l()gp if n = p* with k € N, (17

0 otherwise.

A lot of information concerning the prime counting function 7(x) can be
recovered from information about

Y(x) = Z A(n) = Z logp + O (:1'1/2 log.lr) ;
n<zr p<zx
Partial summation gives
'/T(.F) - U'(.l‘) '
log x

First of all, we shall express ¢(x) in terms of the zeta-function. If ¢ is a positive
constant, then

S ¥ ds= (1.8)

27 Joline S o if0<x<l1.

1 c+ioc o { 1 ifzr>1.
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This yields the Perron formula: for ¢ Z and ¢ > 1,

‘ 1 c+ioco C/ s
Y(x) = -5 —=(s)
2mi Joline C S
Moving the path of integration to the left, we find that the latter expression
is equal to the corresponding sum of residues, that are the residues of the
integrand at the pole of ((s) at s = 1, at the zeros of ((s), and at the pole of
the integrand at s = 0. The main term turns out to be

Res -1 {—%’(s)%s} = ling(s - 1)( L +0(1 )) JT = 7.

(1.9)

s§— s—1

whereas each non-trivial zero p gives the contribution

Res +—, {—%’(s)g} - _T_:_

By the same reasoning, the trivial zeros contribute

io: R | l g 1
= — 10g = == g
o 2 & 22

n=

Incorporating the residue at s = 0, this leads to the the ezact explicit formula

0 1
Y(x) —I——E I———log( —2>—log(27r),
T
o

which is equivalent to Riemann’s formula (1.6). Notice that the right-hand side
of this formula is not absolutely convergent. If ((s) would have only finitely
many non-trivial zeros, the right-hand side would be a continuous function of
£, contradicting the jumps of ¢(x) for prime powers x. However, going on it
is much more convenient to cut the integral in (1.9) at t = £7 which leads to
the truncated version

px)=z— Y 2 40 (%(mg(ﬂ))?). (1.10)

i<t ©
valid for all values of z. Next we need information on the distribution of the
non-trivial zeros. The largest known zero-free region for ((s) was found by
Vinogradov [359] and Korobov [173] (independently) who proved
((s) #0 in o>1-

C
(log |t| + 3)1/3(loglog(|t| + 3))2/3”

where ¢ is some positive absolute constant; the first complete proof duc
to Richert appeared in Walfisz [366]. In addition with the Riemann-von
Mangoldt formula (1.5) one can estimate the sum over the non-trivial zeros
in (1.10). Balancing out 7" and z, we obtain the prime number theorem with
the strongest existing remainder term:



