Second Edition

RAPID APPLICATION

PROTOTYPING
The S’X)ryboarﬂ
pproac

= | to User
s Requirements

Working Model

g Analysis

Demo in
Context

Prototype
Done

/N

Implement

e Stephen J.

OPTION 1 OPTION 2 e
THE EVOLUTIONARY MODEL Clean Up THE THROWAWAY MODEL An d rl 0 | e P h E D ¢
Prototype and r
Document
h A4

Becomes Interim

Working Version
Integrate with

Other Corporate Data

Discard Prototype

Preliminary Design

N

W .
Convert — NN
to Final Blgld :=|nal f S
System e 4
QED Technical Publishing Group

9462680

RAPID
APPLICATION
PROTOTYPING

The Storyboard Approach to User
Requirements Analysis

STEPHEN J. ANDRIOLE

Second Edition

LT

66666666

This book is available at a special discount when you
order multiple copies. For information, contact QED
Information Sciences, Inc., POB 82-181, Wellesley,
MA 02181 or phone 617-237-5656.

© 1992 by QED Information Sciences, Inc.
P.O. Box 82-181
Wellesley, MA 02181

QED Technical Publishing Group is a division of
QED Information Sciences, Inc.

All rights reserved. No part of the material protected by this
copyright notice may be reproduced or utilized in any form

or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and
retrieval systems, without written permission from the copyright
owner.

Library of Congress Catalog Number: 91-18242
International Standard Book Number: 0-89435-403-5

Printed in the United States of America
92919010987 654321

Library of Congress Cataloging-in-Publication Data

Andriole, Stephen J.
Rapid application prototyping : the storyboarding
approach to user requirements analysis.
p. cm.
Bibliography: p.
Includes index.
ISBN 0-89435-403-5
1. Computer software—Development. 2. System
design. 1. Title.
QA76.76.D47A43 1991
005.1—dc19

RAPID
APPLICATION
PROTOTYPING

The Storyboard Approach to User
Requirements Analysis

Books from QED

Database

Migrating to DB2

DB2: The Complete Guide to Implementation and
Use

DB2 Design Review Guidelines

DB2: Maximizing Performance of Online
Production Systems

Embedded SQL for DB2: Application Design and
Programming

SQL for DB2 and SQL/DS Application Developers

Using DB2 to Build Decision Support Systems

The Data Dictionary: Concepts and Uses

Logical Data Base Design

Entity-Relationship Approach to Logical Data Base
Design

Database Management Systems: Understanding and
Applying Database Technology

Database Machines and Decision Support Systems:
Third Wave Processing

IMS Design and Implementation Techniques

Repository Manager/MVS: Concepts, Facilities and
Capabilities

How to Use ORACLE SQL*PLUS

ORACLE: Building High Performance of Online
Systems

ORACLE Design Review Guidelines

Using ORACLE to Build Decision Support Systems

Understanding Data Pattern Processing: The Key to
Competitive Advantage

Developing Client/Server Aplications in an
Architected Environment

Systems Engineering

Quality Assurance for Information Systems:
Methods, Tools, and Techniques

Handbook of Screen Format Design

Managing Software Projects: Selecting and Using
PC-Based Project Management Systems

The Complete Guide to Software Testing

A User’s Guide for Defining Software Requirements

A Structured Approach to Systems Testing

Storyboard Prototyping: A New Approach to User
Requirements Analysis

The Software Factory: Managing Software
Development and Maintenance

Data Architecture: The Information Paradigm

Advanced Topics in Information Engineering

Software Engineering with Formal Metrics

Management

Introduction to Data Security and Controls
CASE: The Potential and the Pitfalls

Management (cont'd)

Strategic and Operational Planning for Information
Services

Information Systems Planning for Competitive
Advantage

How to Automate Your Computer Center:
Achieving Unattended Operations

Ethical Conflicts in Information and Computer
Science, Technology, and Business

Mind Your Business: Managing the Impact of End-
User Computing

Controlling the Future: Managing Technology-
Driven Change

The UNIX Industry: Evolution, Concepts,
Architecture, Applications, and Standards

Data Communications

Designing and Implementing Ethernet Networks

Network Concepts and Architectures

Open Systems: The Guide to OSI and its
Implementation

IBM Mainframe Series

CSP: Mastering Cross System Product

CICS/VS: A Guide to Application Debugging

MYVS COBOL II Power Programmer’s Desk
Reference

VSE COBOL II Power Programmer’s Desk
Reference

CICS Application and System Programming: Tools
and Techniques

QMEF: How to Use Query Management Facility with
DB2 and SQL/DS

DOS/VSE: Introduction to the Operating System

DOS/VSE: CICS Systems Programming

DOS/VSE/SP Guide for Systems Programming:
Concepts, Programs, Macros, Subroutines

Advanced VSE System Programming Techniques

Systems Programmer’s Problem Solver

VSAM: Guide to Optimization and Design

MVS/JCL: Mastering Job Control Language

MVS/TSO: Mastering CLISTS

MVS/TSO: Mastering Native Mode and ISPF

REXX in the TSO Environment

Programming

C Language for Programmers

VAX/VMS: Mastering DCL Commands and Utilitics

The PC Data Handbook: Specifications for
Maintenance, Repair, and Upgrade of the
IBM/PC, PS/2 and Compatibles

UNIX C Shell Desk Reference

QED books are available at special quantity discounts for educational uses, premiums, and sales promotions.
Special books, book excerpts, and instructive materials can be created to meet specific needs.

This is Only a Partial Listing. For Additional Information or a Free Catalog contact
QED Information Sciences, Inc. « P. O. Box 82-181 « Wellesley, MA 02181
Telephone: 800-343-4848 or 617-237-5656 or fax 617-235-0826

For Emily Breft, the youngest one . . .

Acknowledgments

his second edition of Storyboard Prototyping (now

called Rapid Application Prototyping) is the prod-
uct of many years of thinking about how to identify
and validate exactly what it is systems are supposed
to do for their users. We began building screen displays
of functional capabilities in the early 1970s. It was
much harder then than now because of the absence of
special-purpose and off-the-shelf tools. Today, of course,
things are very different. There are many tools avail-
able for storyboard prototyping. The first acknowl-
edgment thus goes to the community of software
developers and vendors who have provided designers
with a set of extremely powerful and versatile tools.
[would also like to acknowledge the colleagues—too
numerous to mention individually—with whom I have
worked over the years designing, developing, and
demonstrating interactive storyboards. I would like to
thank my students at George Mason University and,
more recently, at Drexel University for their insights
into storyboarding.

On a more personal level, I would like to thank
my wife of over twenty years, Denise, for her leg-
endary understanding. Her love and support make it
possible for me to pursue my vocations and avocations.

Finally, the kids deserve special mention. Kath-
erine and Emily have grown accustomed to seeing me
on the Macintosh. While they have no idea what I
really do on the computer, they know that for me it
is fun. They don’t see it as competition for them but
rather as Daddy’s toy, and they have—even at their
tender ages—shown the kind of understanding and
patience that not every adult I’ve met has mastered.
Thanks, kids, for not making me feel guilty—at least
not that often.

All errors, omissions, and other technical crimes
are entirely mine.

SJA
Bryn Mawr,
Pennsylvania

Xiii

Infroduction

Software engineering—if the term can even be
used to describe the process by which we convert
user requirements into executable code—is not cost-
effective. Studies suggest that we spend more on mod-
ifications and maintenance than we do on the initial
design of even simple software systems. A variety of
explanations for this sad state of affairs come to mind:
computer science is not really a science but much more
of an art . . . users have a hard time articulating their

needs . . . inappropriate hardware configurations are
often foisted upon systems analysts . . . we don’t pay
enough . . .

The fact remains that a large percentage of our
software systems simply don’t work very well. They
often don’t do what they were intended to do, more
often than not cost far more than planned, and almost
always take longer to design and develop than even the
most cynical pessimist anticipates. Users, by and large,
are unhappy with their computing environments. They are
usually forced to learn elaborate routines just to initialize
simple programs. They are expected to be adaptive and
creative. They are also expected to be endlessly patient
for proverbial ‘‘enhancements.’’ Documentation is
often poor or utterly incomprehensible.

What is going on? It is safe to say that the origins
of modern computing cannot be traced to ‘‘user friend-
liness.”” When it all began years ago, computer soft-
ware, much like an about-to-retire information systems
analyst, was cranky. It was written by scientists for

scientists. Complicated command languages, inexpli-
cable menu structures, and slow response time were the
rule rather than the exception, but no one really minded
because computers were specialized tools intended for
use by a select few—a group honored to have the op-
portunity to work with the new electronic calculators.
Then, of course, technology provided us with time-
sharing, distributed databases, and personal computers.
The world of computing would never be the same.

It is possible that our failure to appreciate non-
technical users is anchored in the origins of modern
computing. The software industry itself is largely un-
prepared to respond to complicated user requirements,
having instead concentrated for years on the design
and development of embedded software or software
that had only limited contact with human operators. The
current push in computer-aided software engineering—
or CASE—is representative of this emphasis. We have
nearly perfected the implementation of structured
methods for software specification, but have spent rel-
atively little on the acquisition of system-level and
user-functional requirements.

Relatedly, many software engineers who began
their careers in the 1960s do not fully appreciate the
need for flexible, friendly interfaces or polite dialogue.
Their expertise lies in the design and development of
algorithms for handling databases or in managing sci-
entific computations, not in the design of elegant in-
terfaces.

XVi INTRODUCTION

When computers were used by experts for eso-
teric purposes, and when requirements were invented
along the way, the need for tools and techniques for
requirements validation was small. Today, nearly all of
the leverage lies in front-end analyses, in accurate require-
ments definitions. This book—the second edition—
seeks such leverage.

In the 1970s, when we failed to capture user
requirements the first time through, we simply mod-
ified the program (and modified the program, and mod-
ified the program, and . . .) until we got it right. Users
waited while systems analysts reviewed their require-
ments data, and managers cringed when programming
teams were put back to work again and again (and
again and again . . .). By the 1980s, we recognized
the recalcitrance of user requirements and ushered in
the era of ‘‘rapid prototyping.”’

Prototyping is a euphemism for failure. Proto-
typing legitimizes failure. It also presumes that re-
quirements will evolve over time and that the
programming of executable code should lag behind the
validation of requirements. But the key to successful
prototyping is cost-effectiveness. If your first and sec-
ond (and third and fourth . . .) prototypes are expen-
sive, then there will be little left for the ‘‘real’” system.
If your early prototypes consume months or years, then
your users—your clients—will forget your commit-
ment to their problem. Prototypes must be fast and
cheap. This book suggests how to accomplish these
goals.

This is the second edition of Storyboard Proto-
typing. Over the past few years, we have continued to
apply the storyboard prototyping process successfully.
We have—as the new appendices suggest—begun to
use the technique to validate the requirements of some
unconventional systems. We have improved the pro-
cess by which system concepts—represented in story-
board prototypes—are *‘‘sized,’’ or scaled up to full-
fledged working systems. We have also identified a
much larger set of off-the-shelf tools that support story-
board prototyping.

The book argues faithfully that before software
requirements (expressed in data flow diagrams, entity-
relationship diagrams, and state transition charts, among
other forms) can be specified, user requirements must
be defined. Most articles and books on requirements
analysis ignore this critical distinction and concentrate
exclusively on user requirements.

Motivation for both editions of the book came
from several sources. First and foremost, its origins
can be traced to a number of system failures we ex-
perienced in the 1970s. Many of our information and
decision support systems simply went unused. When
we conducted system post-mortems, we discovered
that although we developed ‘‘formal’’ requirements
definitions, they were frequently validated not by users
but by programmers—a fatal flaw in any systems de-
sign process. We also tried to protect as much time
and money from the requirements analysis process as
possible, so that project resources would be adequate
for programming. (Later we discovered that the more
you spend on requirements the less you need to spend
on programming.) We also had a weak inventory of
requirements analysis tools, especially software tools.

Motivation can also be traced to our desire to
find a better way. Over the years, we have experi-
mented with several approaches, tools and, tech-
niques. This book reports on one—storyboarding—
that has paid huge dividends.

The book is intended to be practical. Substantial
parts have been designed to communicate with prac-
titioners. Other parts offer some food for applied thought.
There is very little in the book that is purely theoretical
or abstract. At the same time, theoretical debts are
easy to find, especially as they pertain to the use of
generic task and user taxonomies. In short, the book
tries to explain an approach to requirements analysis
and system sizing that has worked in the trenches.

The book is organized into five chapters and sev-
eral important appendices. Chapter 1 describes some
modern systems analysis challenges, noting how re-
quirements have evolved from static and data-intensive
to dynamic and analytical. Chapter 2 reviews the con-
ventional systems design process and replaces it with
one that relies strongly upon prototyping. Chapter 3
describes the prototyping strategy in detail, concen-
trating on requirements analysis methods and on how
requirements can be modeled. Chapter 4 details the
use of the storyboarding technique for rapid prototyp-
ing. It also describes the approach to ‘‘system sizing’’
that we have adopted. Chapter 5 gets a little philo-
sophical about storyboarding: what are its strengths
and weaknesses? where is the technique heading?

The case studies in the appendices are drawn
from varied experiences in systems design. A cross-
section of applications is described to suggest just how

INTRODUCTION Xvii

flexible the technique is, that even in the design of
physical interfaces—such as for the operation of elec-
tronic equipment—the technique can be powerful.
The first case study deals with a resource allocation
problem, the second with an information retrieval
problem. The third case—by Peggy Brouse—turns
to knowledge-based health care claims processing,
while the fourth—by Hal Gumbert, Brian Magee, and
Greg Senior—Ilooks at how storyboard prototypes can
be used to design a dental information system and
how such concepts can evolve from functional hier-
archies into data flow and entity-relationship diagrams

through storyboarding. The fifth case study—by Peter
Aiken and Kim Madsen—examines the design for an
interface to a piece of electronic equipment. It is a
relatively unconventional application of the technique
but one that suggests the versatility of storyboard
prototyping.

This second edition of Storyboard Prototyping
refines the approach via the presentation of some new
storyboards and—especially—the identification of a
new set of off-the-shelf tools for rapid storyboard pro-
totyping. These two major changes will, we hope,
make storyboarding even more useful.

Figures

Tables
Acknowledgments
Infroduction

Chapter 1: Modern Systems Design
and Development in Perspective

The New Era of Analytical Computing

Elusive Requirements

The Need for New Design Concepts,
Methods, and Tools

Chapter 2: The Systems Design
and Development Process

Conventional Design Methods and Models
The Prototyping Alternative

Requirements Analysis in Perspective

System Modeling and Remodeling

The Role of Users in the Requirements
Validation Process

Requirements Models as Prototypes

The Limits of CASE-Based
Prototyping

Contents

X1

Xiil

XV

—

S X® oW W

11
11

Chapter 3: Prototyping in Perspective

Prototyping Principles
Requirements Analysis Methods

Task Requirements Analysis Methods

User Profiling Methods

Organizational-Doctrinal Profiling
Methods

The Task/User/Organizational—
Doctrinal Matrix

Modeling Methods

Narrative Methods

Flowcharting Methods

Generic Model-Based Methods

Screen Display and Storyboarding
Methods

Models, Tasks, Users, and Organizations—
Doctrine: The Iterative Remodeling
Process

Chapter 4: Storyboard Prototyping:
A New Approach to User Requirements
Validation and System Sizing

Storyboarding in the Design Process

The Design and Development of Interactive
Storyboards

Storyboarding Tools and Techniques

15

16
17

17
23

27

29
33

33
33
34

34

37

39
39

41
43

vii

viii CONTENTS

Apple Macintosh-Based Tools

IBM PC- (and Compatible-) Based
Tools

UNIX Tools

Storyboarding for Requirements Validation:

Requirements Conferencing
An Abbreviated Storyboarding Case Study
System Sizing from Storyboards

Database and Knowledge Base
Specification

Analytical Methods Selection

Specification of User—Computer
Interface

Software Engineering Sizing

Hardware Configuration Sizing

Sizing and the Systems Design and
Development Process

Chapter 5: Storyboarding in Perspective

Strengths and Weaknesses

Storyboarding and Computer-Aided
Software Engineering (CASE)

Next-Generation Storyboard Prototyping

44

46
47

48
48
48

60
60

64

64
64

66

69
69

71
71

References

Appendix A: Resource Allocation
Storyboard, Stephen J. Andriole

Appendix B: Information Retrieval
Storyboard, Stephen J. Andriole

Appendix C: Disability Claims Processing
Storyboard, Peggy Brouse

Appendix D: Dental Information
Management System Storyboard,
Harold C. Gumbert, lll, Brian Magee,
and Greg Senior

Appendix E: Cooperative Interactive
Storyboard Prototyping: Designing
Friendlier VCRs, Kim H. Madsen and
Peter H. Aiken

Index

73

75

157

173

245

261
335

Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7
Figure 3.8

Figure 3.9
Figure 3.10

Figure 3.11

‘‘Analytical’’ vs. data-oriented
computing.

“Waterfall”’ life cycle.
DOD-StD.2167A life cycle.
System design and development
process via prototyping.
CASE and the design and
development process.
Requirements definition by
prototyping.

Prototyping strategies.
Requirements analysis:
questionnaire and survey
methods.

Requirements analysis:
interview and field observation
methods.

Requirements analysis:
simulation and gaming
methods.

Task requirements analysis
process.

A simple user taxonomy.

User requirements analysis
process.

Organizational requirements
analysis process.
Three-dimensional requirements
matrix.

The requirements—modeling—
prototyping process.

Figures

(@30}

13

14

18

19

21

22

23

24
26

28

30

31

32

Figure 3.12
Figure 4.1

Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure A.1
Figure B.1
Figure B.2
Figure D.1
Figure D.2
Figure D.3

Figure D.4

Figure D.5
Figure D.6

Generic modeling methods.
Storyboarding in the design and
development process.

Try before buying: storyboards
as prototypes.

Try before buying: animated
storyboards and application
prototypes.

Analytical methods taxonomy.
Taxonomy of decision-aiding
methods.

Exemplar tasks/methods
matching.

Sizing and the systems design
and development process.
Resource allocation task
requirements analysis process.
Master menu structure.
Work/display space.

Dental information system
functions.

System function: patient
management.

System function: financial
management.

System function: office
management.

Data flow diagram.
Entity-relationship diagram.

35
40
41
42
61
62
63
67
76

158

159

246

247

248

249

257
258

Table 2.1

Table 2.2

Table 3.1

Table 4.1

Galitz’s generic task/behavior
taxonomy.

The Berliner et al. generic task/
behavior taxonomy.

Ragan et al. taxonomy of
cognitive styles.

Conventional user—computer
interaction options.

Tables

27

65

Table 4.2

Table A.1

Table A.2

Table D.1

Some ‘‘unconventional’’ user—
computer interaction options.
Resource allocation task
hierarchy.

Resource allocation task
descriptions.

Data dictionary.

66

77

79
252

ciarer 1 Modern Systems
Design and
Development in
Perspective

here did we go wrong? Why do so many of our

interactive computer-based systems fail to sat-
isfy user requirements? The short answer is that things
have changed. No longer are applications limited to
well-bounded inventory control problems. No longer
are we preoccupied with the design and development
of systems to maintain small databases. Today, users
expect all kinds of decision support, all kinds of in-
teractive options. Users today want systems to aug-
ment their problem-solving capabilities in real time.
They want analytical support.

Analytical requirements are difficult to identify,
define, and validate. Users find it difficult to express
analytical requirements. Systems analysts find it dif-
ficult to organize analytical requirements for subse-
quent conversion to software.

The future is not necessarily bright. The analyt-
ical challenges to software systems designers are grow-
ing in number and complexity, but our methods for
capturing analytical requirements are not evolving pro-
portionately. Expectations about real-time software
support for strategic battle management in space, cor-
porate crisis management, and personal financial plan-
ning are growing as our ability to conduct complex
requirements analyses has atrophied. Clearly, there is
a need for some new ways to think about requirements
analysis, requirements modeling, and the design strat-
egies and tactics that ultimately determine the success
of all software projects.

The New Era of Analytical Computing

Not so many years ago, computers were used most-
ly by scientists and engineers. As the field ma-
tured, computing was distributed to a larger subset of
professionals—accountants, budgeteers, and some
managers. The personal computer (PC) altered forever
the way we think about computing. Initially, the appeal
of desktop power was mitigated by cost, but as soon
as PCs became affordable, the revolution in personal
computing began.

Years ago, computers were used to perform cal-
culations that were prohibitively expensive via any
other means. Early interactive systems were barely so,
and engineers had to hack at them until they behaved.
When general-purpose mainframes emerged, large or-
ganizations with huge databases expressed the most
interest. It is safe to say that most early applications
of general-purpose mainframe computers were data-
base oriented.

Today there are interactive ‘decision support
systems’’ that profess to augment the decision-making
power of human information processors. There are
systems that help users generate options, evaluate op-
tions, and interpret the feedback received after op-
tions are implemented. There are systems that help
users plan strategies, create scenarios, and diagnose
diseases.

Figure 1.1 suggests where database-oriented and

2 RAPID APPLICATION PROTOTYPING

Figure 1.1 “Analytical” vs. data-oriented computing.

>
w
-
4
w
o

ANALYTICAL COMPUTING
DATA-ORIENTED COMPUTING

analytical computing begin and end. The differences
are clear. Analytical problem solving assumes some
degree of cognitive information processing. While all
cognitive processing is anchored in “‘data’ and *‘knowl-
edge’’ that must be stored and manipulated, there are
unique properties of cognitive information processing
that call for unique requirements definitions. The dif-
ference between the collection and interpretation of
diagnostic data illustrates database-oriented versus an-
alytical problem solving (and, by implication, data
base-oriented versus analytical computing).

As computers become cheaper, smaller, and faster,

PLAN
EVALUATE

CLASSIFY

and as expectations about how they can be used rise,
more and more instances of “‘analytical computing”’
will become necessary and—eventually—common-
place . But we cannot necessarily get there from here.
The leverage lies in our ability to identify, define, and
validate complex requirements.

Elusive Requirements

Anyone who has conducted a requirements analysis
with real users who have complex analytical problems
knows how frustrating the requirements analysis pro-

MODERN SYSTEMS DESIGN AND DEVELOPMENT IN PERSPECTIVE 3

cess can be. Analytical requirements are inherently
recalcitrant. A simple example might illustrate some
of the important difficulties. Imagine a computing
challenge that calls for the design and development of
a system capable of assisting managers in their selec-
tion of display terminals for the office. The require-
ments for such a system are clearly analytical. Users
of the system would ideally be able to evaluate ter-
minals vis-a-vis a set of weighted criteria; perform
“‘what-if”’ analyses by varying the importance of cri-
teria; add, delete and combine criteria; and rank-order
candidate terminals according to how well (or badly)
they scored on the criteria. They might also want to
permit judgments about the candidates to be ‘‘quali-
tative’” and ‘‘quantitative.”” Any number of require-
ments might emerge from the requirements analysis.

What else? Over time the list would grow longer
and longer. The job of the requirements analyst would,
among other tasks, involve defining and distilling these
requirements to their most diagnostic properties. With-
out question, this process would be iterative. Why?
Because analytical requirements are nearly impossible
to identify and define accurately in a single take, be-
cause users are notoriously inarticulate, and because
analytical problems are usually ill-structured, and as
such, defy definitions that are conveniently well-
bounded.

The real world of design constraints also exerts
an impact upon the analytical requirements analysis
process. Given that few design projects have unlimited
funds and flexible schedules, requirements must be
prioritized. Users are inevitably confronted with trade-
off decisions: “‘If we give you these capabilities, we
cannot give you these. . . . Which are more impor-
tant?”’ Judgments about what is possible given time
and money constraints are usually made qualitatively.
Users can express preferences, but system architects
synthesize judgments with information to arrive at a
pragmatic system development blueprint. This process
of “‘synthesis,”” while abstract, defines the essence of
the requirements dilemma. When systems analysts are
confronted with (a) analytical requirements, (b) stated
user preferences, (c) user-identified priorities, and (d)
empirical constraints, they often produce constraint-
dominated design concepts. These ‘‘conservative’’ de-
signs emerge because constraints are often the most
empirical variables in the equation and because it is
far easier to approach design via the identification of

what cannot be done rather than the integration and
synthesis of what can and should be done.

Analytical requirements are elusive because they
are complex. It is foolish to assume that they can be
easily captured the first time, the second time, or per-
haps even the third. It is also important to remember
that requirements cannot be captured in a vacuum.
Users remain integral parts of the requirements anal-
ysis process.

We need some new tools, techniques, and meth-
ods to elicit, define, represent, and validate complex
analytical requirements. When a planner calls for de-
cision support, when a manager needs to allocate re-
sources optimally, and when a forecaster must predict
the future, systems analysts must call upon all the
science and art at their disposal. Unfortunately, there
is perhaps as much art in requirements analysis as there
is science. Really good systems analysts are orders of
magnitude better than competent ones, but they often
have great difficulty introspecting upon the processes
by which they cull requirements from inarticulate users.
Much too much of the process—when it goes right—
is not reproducible. We have precious little data on
the essence of successful requirements definitions.

The Need for New Design Concepts,
Methods, and Tools

If projections about the need for analytical computing
are accurate, requirements challenges will grow dra-
matically over the next few years and well into the
foreseeable future. We are currently unprepared to deal
with the onslaught of requirements problems—prob-
lems that will grow in number and complexity as hard-
ware becomes cheaper and user expectations higher.

The most important change must occur in the
problem-solving perspective that we bring to the sys-
tems design and development process. Conventional
models of the design process have proven inadequate
to the development of quality software. We are at a
crossroads today: one direction is slowly and painfully
evolutionary, oriented toward incremental changes in
the design process; another direction is more radical,
suggesting that the design process should be front-
loaded with time, money, and talent. The working
assumption must be that there is leverage in the front
end of the design process, leverage that can protect a
software project from disaster as it matures.

