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Prejace

Einstein’s general theory of relativity requires a curved space for the descrip-
tion of the physical world. If one wishes to go beyond a superficial discussion
of the physical relations one needs to set up precise equations for handling
curved space. There is a well-established but rather complicated mathe-
matical technique that does this. It has to be mastered by any student who
wishes to understand Einstein’s theory.

This book is built up from a course of lectures given at the Physics Depart-
ment of Florida State University and has the aim of presenting the indis-
pensible material in a direct and concise form. It does not require previous
knowledge beyond the basic ideas of special relativity and the handling of
differentiations of field functions. It will enable the student to pass through
the main obstacles of understanding general relativity with the minimum
expenditure of time and trouble and to become qualified to continue more
deeply into any specialized aspects of the subject that interest him.

P. A. M. Drac

Tallahassee, Florida
February 1975
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. Special relativity

For the space-time of physics we need four coordinates, the time ¢ and three
space coordinates x, y, z. We put

t = x°, x = x!, y = x2, z=x3,
so that the four coordinates may be written x*, where the suffix u takes on the
four values 0, 1, 2, 3. The suffix is written in the upper position in order that
we may maintain a “balancing” of the suffixes in all the general equations
of the theory. The precise meaning of balancing will become clear a little
later.

Let us take a point close to the point that we originally considered and let
its coordinates be x* + dx*. The four quantities dx* which form the dis-
placement may be considered as the components of a vector. The laws of
special relativity allow us to make linear nonhomogeneous transformations
of the coordinates, resulting in linear homogeneous transformations of the
dx*. These are such that, if we choose units of distance and of time such that
the velocity of light is unity,

(dx%)? — (dx')? — (dx?)? — (dx3)? (1.1

is invariant.

Any set of four quantities A* that transform under a change of coordinates
in the same way as the dx* form what is called a contravariant vector. The
invariant quantity

(4% — (4")* — (4% — (4% = (4, 4) (1.2)

may be called the squared length of the vector. With a second contravariant
vector B*, we have the scalar product invariant

A°B° — A'B' — A*B? — A®B® = (A, B). (1.3)

In order to get a convenient way of writing such invariants we introduce
the device of lowering suffixes. Define

Ag=A° A = —A', A,=—-A% A =—A% (L4

Then the expression on the left-hand side of (1.2) may be written 4, A, in
which it is understood that a summation is to be taken over the four values
of . With the same notation we can write (1.3) as 4, B* or else A*B,,.
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The four quantities A, introduced by (1.4) may also be considered as the
components of a vector. Their transformation laws under a change of co-
ordinates are somewhat different from those of the 4*, because of the dif-
ferences in sign, and the vector is called a covariant vector.

From the two contravariant vectors 4* and B* we may form the sixteen
quantities A*B”. The suffix v, like all the Greek suffixes appearing in this work,
also takes on the four values 0, 1, 2, 3. These sixteen quantities form the com-
ponents of a tensor of the second rank. It is sometimes called the outer
product of the vectors 4* and B, as distinct from the scalar product (1.3),
which is called the inner product.

The tensor A*B" is a rather special tensor because there are special re-
lations between its components. But we can add together several tensors
constructed in this way to get a general tensor of the second rank; say

T" = A*B’ + A"B” + A™B" + --.. (1.5)

The important thing about the general tensor is that under a transformation
of coordinates its components transform in the same way as the quantities
A*B.

We may lower one of the suffixes in T** by applying the lowering process
to each of the terms on the right-hand side of (1.5). Thus we may form T,” or
T*,.We may lower both suffixes to get T,.

In 7,” we may set v = u and get T,“ This is to be summed over the four
values of u. A summation is always implied over a suffix that occurs twice in a
term. Thus T,* is a scalar. It is equal to 7*,,.

We may continue this process and multiply more than two vectors to-
gether, taking care that their suffixes are all different. In this way we can
construct tensors of higher rank. If the vectors are all contravariant, we get
a tensor with all its suffixes upstairs. We may then lower any of the suffixes
and so get a general tensor with any number of suffixes upstairs and any
number downstairs.

We may set adownstairs suffix equal to an upstairs one. We then have to
sum over all values of this suffix. The suffix becomes a dummy. We are left
with a tensor having two fewer effective suffixes than the original one. This
process is called contraction. Thus, if we start with the fourth-rank tensor
T*,,’°, one way of contracting it is to put ¢ = p, which gives the second rank
tensor T*,,°, having only sixteen components, arising from the four values of
4 and v. We could contract again to get the scalar T*,,°, with just one com-
ponent.
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At this stage one can appreciate the balancing of suffixes. Any effective
suffix occurring in an equation appears once and only once in each term of
the equation, and always upstairs or always downstairs. A suffix occurring
twice in a term is a dummy, and it must occur once upstairs and once down-
stairs. It may be replaced by any other Greek letter not already mentioned
in the term. Thus T*,,? = T*,* A suffix must never occur more than twice in
a term.

1. Oblique axes

Before passing to the formalism of general relativity it is convenient to
consider an intermediate formalism—special relativity referred to oblique
rectilinear axes.

If we make a transformation to oblique axes, each of the dx* mentioned
in (1.1) becomes a linear function of the new dx* and the quadratic form (1.1)
becomes a general quadratic form in the new dx*. We may write it

g,, dx" dx’, (2.1)

with summations understood over both pand v. The coefficients g, appearing
here depend on the system of oblique axes. Of course we take g,, = g,,,
because any difference of g,, and g,, would not show up in the quadratic
form (2.1). There are thus ten independent coefficients g,,.

A general contravariant vector has four components A* which transform
like the dx* under any transformation of the oblique axes. Thus

g, A*A"

is invariant. It is the squared length of the vector A*
Let B* be a second contravariant vector; then A* + AB* is still another,
for any value of the number 4. Its squared length is

gu(A" + AB*)(4* + AB’) = g, A"A” + ig,,A"B" + ¢,,A’B") + A°g,,B"B".

This must be an invariant for all values of 1. It follows that the term indepen-
dent of A and the coefficients of 4 and A2 must separately be invariants. The
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coefficient of 1 is
g, A"B’ + ¢, A’B* = 2g,,A"B’,

since in the second term on the left we may interchange u and v and then
use g,, = g,,. Thus we find that g,,4*B" is an invariant. It is the scalar
product of A* and B*.

Let g be determinant of the g,,. It must not vanish; otherwise the four
axes would not provide independent directions in space-time and would
not be suitable as axes. For the orthogonal axes of the preceding section the
diagonal elements of g,, are 1, —1, —1, —1 and the nondiagonal elements
are zero. Thus g = — 1. With oblique axes g must still be negative, because
the oblique axes can be obtained from the orthogonal ones by a continuous
process, resulting in g varying continuously, and g cannot pass through the
value zero.

Define the covariant vector A, with a downstairs suffix, by

‘;4_“l = g“vAv_ (2.2)

Since the determinant g does not vanish, these equations can be solved for
A’ in terms of the 4,,. Let the result be

A = gPA,. 2.3)

Each g*” equals the cofactor of the corresponding g, in the determinant of
the g,,, divided by the determinant itself. It follows that g** = g**.

Let us substitute for the A" in (2.2) their values given by (2.3). We must
replace the dummy x in (2.3) by some other Greek letter, say p, in order not
to have three u’s in the same term. We get

An = g”‘,g“”Ap.
Since this equation must hold for any four quantities 4,, we can infer
99" = gy (24)
where

gh=1 foru=np,

2.5
=0 foru# p. @3

The formula (2.2) may be used to lower any upper suffix occurring in a
tensor. Similarly, (2.3) can be used to raise any downstairs suffix. If a suffix is
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lowered and raised again, the result is the same as the original tensor, on
account of (2.4) and (2.5). Note that g just produces a substitution of p for 4,

goAr = A,
or of u for p,
g5 A p = A -
If we apply the rule for raising a suffix to the uin g, , we get
9% = 9%
This agrees with (2.4), if we take into account that in g*, we may write the
suffixes one above the other because of the symmetry of g,,,. Further we may
raise the suffix v by the same rule and get
g7 = 9’q3,
a result which follows immediately from (2.5). The rules for raising and lower-
ing suffixes apply to all the suffixes in g,,, g4, g"".

3. (urvilinear coordinates

We now pass on to a system of curvilinear coordinates. We shall deal with
quantities which are located at a point in space. Such a quantity may have
various components, which are then referred to the axes at that point. There
may be a quantity of the same nature at all points of space. It then becomes a
field quantity.

If we take such a quantity Q (or one of its components if it has several),
we can differentiate it with respect to any of the four coordinates. We write
the result

0
axn =~

A downstairs suffix preceded by a comma will always denote a derivative
in this way. We put the suffix 4 downstairs in order to balance the upstairs u
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in the denominator on the left. We can see that the suffixes balance by noting
that the change in Q, when we pass from the point x* to the neighboring point
x* + dxH 1s

60 =Q, ox". (3.1)

We shall have vectors and tensors located at a point, with various com-
ponents referring to the axes at that point. When we change our system of
coordinates, the components will change according to the same laws as in the
preceding section, depending on the change of axes at the point concerned. We
shall have a g,, and a g** to lower and raise suffixes, as before. But they are no
longer constants. They vary from point to point. They are field quantities.

Let us see the effect of a particular change in the coordinate system.
Take new curvilinear coordinates x', each a function of the four x’s. They
may be written more conveniently x*, with the prime attached to the suffix
rather than the main symbol.

Making a small variation in the x*, we get the four quantities éx* forming
the components of a contravariant vector. Referred to the new axes, this
vector has the components

Ix* = o ox’ = x* 5x,
ax\l »
with the notation of (3.1). This gives the law for the transformation of any
contravariant vector A*; namely,

A¥ = x4, (3.2)
Interchanging the two systems of axes and changing the suffixes, we get
A* = X, A¥ (3.3)

We know from the laws of partial differentiation that

with the notation (2.5). Thus
xh xk = gt (34

This enables us to see that the two equations (3.2) and (3.3) are consistent,
since if we substitute (3.2) into the right-hand side of (3.3), we get

A oAV . A 4V A
X xh A" =g, A” = A%
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To see how a covariant vector B, transforms, we use the condition that
A*B, is invariant. Thus with the help of (3.3)

A"'B“, = A’B, = xﬁ, A*B,.
This result must hold for all values of the four A*'; therefore we can equate the
coefficients of A*" and get

B, = x*.B,. (3.5)

I

We can now use the formulas (3.2) and (3.5) to transform any tensor with
any upstairs and downstairs suffixes. We just have to use coefficients like
x* for each upstairs suffix and like x*, for each downstairs suffix and make all
the suffixes balance. For example

” by
T*F = x%xPx", T, (3.6)

Any quantity that transforms according to this law is a tensor. This may be
taken as the definition of a tensor.

It should be noted that it has a meaning for a tensor to be symmetrical or
antisymmetrical between two suffixes like 4 and u, because this property of
symmetry is preserved with the change of coordinates.

The formula (3.4) may be written

xhxbg = g
It just shows that g2 is a tensor. We have also, for any vectors A* B,
gup A*BF =g,,A*B" = g, X" X", A" B
Since this holds for all values of 4%, B#, we can infer
Gup = Guv X X 3.7

This shows that g,, is a tensor. Similarly, g** is a tensor. They are called
the fundamental tensors.

If § is any scalar field quantity, it can be considered either as a function of
the four x* or of the four x*. From the laws of partial differentiation

_ i
S,u' - S,l X

Hence the S ; transform like the B, of equation (3.5) and thus the derivative
of a scalar field is a covariant vector field.
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4, Nontensors

We can have a quantity N, with various up and down suffixes, which is not
a tensor. If it is a tensor, it must transform under a change of coordinate
system according to the law exemplified by (3.6). With any other law it is a
nontensor. A tensor has the property that if all the components vanish in
one system of coordinates, they vanish in every system of coordinates. This
may not hold for a nontensor.

For a nontensor we can raise and lower suffixes by the same rules as for a
tensor. Thus, for example,

g*N¥,, = N*,.

The consistency of these rules is quite independent of the transformation laws
to a different system of coordinates. Similarly, we can contract a nontensor by
putting an upper and lower suffix equal.

We may have tensors and nontensors appearing together in the same equa-
tion. The rules for balancing suffixes apply equally to tensors and non-
tensors,

THE QUOTIENT THEOREM

Suppose P, ,, is such that A*P
tensor. ‘
To prove it, write A*P,,,, = Q,,. We are given that it is a tensor; therefore

Qp, = Qv Xip X5

2uv 18 @ tensor for any vector A* ThenP,, isa

Thus

AP, = A*P,...x"x".
afy Ay By

Since A4* is a vector, we have from (3.2),
AY = AR,
So

“ Y w v
APy, = A°Xy Py X X7,
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This equation must hold for all values of 4% so

B PO
Paﬂw - Pl’u’V’x,ax,ﬁx.v’

showing that P, is a tensor.
The theorem also holds if P, is replaced by a quantity with any number
of suffixes, and if some of the suffixes are upstairs.

. Curved space

One can easily imagine a curved two-dimensional space as a surface im-
mersed in Euclidean three-dimensional space. In the same way, one can have a
curved four-dimensional space immersed in a flat space of a larger number
of dimensions. Such a curved space is called a Riemann space. A small region
of it is approximately flat.

Einstein assumed that physical space is of this nature and thereby laid
the foundation for his theory of gravitation.

For dealing with curved space one cannot introduce a rectilinear system of
axes. One has to use curvilinear coordinates, such as those dealt with in
Section 3. The whole formalism of that section can be applied to curved
space, because all the equations are local ones which are not disturbed by the
curvature.

The invariant distance ds between a point x* and a neighboring point
x* + dx* is given by

ds* = g,, dx* dx’

like (2.1). ds is real for a timelike interval and imaginary for a spacelike
interval.

With a network of curvilinear coordinates the g,,, given as functions of the
coordinates, fix all the elements of distance; so they fix the metric. They deter-
mine both the coordinate system and the curvature of the space.



10 GENERAL THEORY OF RELATIVITY

6. Parallel displacement

Suppose we have a vector A* located at a point P. If the space is curved,
we cannot give a meaning to a parallel vector at a different point Q, as one can
easily see if one thinks of the example of a curved two-dimensional space in a
three-dimensional Euclidean space. However, if we take a point P’ close to P,
there is a parallel vector at P, with an uncertainty of the second order,
counting the distance from P to P’ as the first order. Thus we can give a
meaning to displacing the vector A* from P to P’ keeping it paralle] to
itself and keeping the length constant.

We can transfer the vector continuously along a path by this process of
parallel displacement. Taking a path from P to Q, we end up with a vector at
Q which is parallel to the original vector at P with respect to this path. But a
different path would give a different result. There is no absolute meaning
to a parallel vector at Q. If we transport the vector at P by parallel displace-
ment around a closed loop, we shall end up with a vector at P which is usually
in a different direction.

We can get equations for the parallel displacement of a vector by supposing
our four-dimensional physical space to be immersed in a flat space of a higher
number of dimensions; say N. In this N-dimensional space we introduce
rectilinear coordinates z%(n = 1, 2, ..., N). These coordinates do not need to
be orthogonal, only rectilinear. Between two neighboring points there is an
invariant distance ds given by

ds* = h,, dz" dz™, 6.1)
summed for n,m = 1,2, ..., N. The h,,, are constants, unlike the g,,. We may
use them to lower suffixes in the N-dimensional space; thus

dz, = h,, dz".

Physical space forms a four-dimensional “surface” in the flat N-di-
mensional space. Each point x* in the surface determines a definite point y"
in the N-dimensional space. Each coordinate y" is a function of the four
x’s; say y*(x). The equations of the surface would be given by eliminating the
four x’s from the Ny"(x)’s. There are N — 4 such equations.

By differentiating the y"(x) with respect to the parameters x*, we get

oy"(x)
oxr T
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For two neighboring points in the surface differing by dx*, we have
oy" =y, ox*. 6.2)
The squared distance between them is, from (6.1)
8s% = h,,, 6y" 8y™ = Ry, V", V7 Ox* 6x”.

We may write it

65 = y", y,, Ox* 6x
on account of the h,,, being constants. We also have

85 = g,, Ox* 8x”.

Hence

Guy = ViuVny- (6.3)

Take a contravariant vector A* in physical space, located at the point x.
Its components A* are like the éx* of (6.2). They will provide a contravariant
vector 4" in the N-dimensional space, like the 53" of (6.2). Thus

A" =y AR, (6.4)

This vector A", of course, lies in the surface.

Now shift the vector A", keeping it parallel to itself (which means, of course,
keeping the components constant), to a neighboring point x + dx in the
surface. It will no longer lie in the surface at the new point, on account of the
curvature of the surface. But we can project it on to the-surface, to get a
definite vector lying in the surface.

The projection process consists in splitting the vector into two parts, a
tangential part and a normal part, and discarding the normal part. Thus

Am = A

tan

+ Ay, 6.5)

Now if K* denotes the components of A7, referred to the x coordinate
system in the surface, we have, corresponding to (6.4),

A, = KM (x + dx), (6.6)

with the coefficients )", taken at the new point x + dx.

A?,. is defined to be orthogonal to every tangential vector at the point
x + dx, and thus to every vector like the right-hand side of (6.6), no matter
what the K* are. Thus

Afor Y ulx + dx) = 0.
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If we now multiply (6.5) by y, ,(x + dx), the A}, term drops out and we are
left with

A"y, (x + dx) = K*y" (x + dx)y, (x + dx)
= K¥g, (x + dx)
from (6.3). Thus to the first order in dx
K(x + dx) = A"[,4(X) + Vn,0 4%°]

= A“y?u[yn,v + yn,v,a dxa]
= A, + A", Yp .0 dX°.

This K, is the result of parallel displacement of A4, to the point x + dx. We
may put :

K,—A,=4dA,,
so dA, denotes the change in 4, under parallel displacement. Then we have

dA, = A"y, Yy, . 4X°. (6.7)

1. (hristoffel symbols

By differentiating (6.3) we get (omitting the second comma with two dif-
ferentiations)

g,uv,a = y:l;myn,v + y:luyn,va
= Ve ¥y T Ynva Vs (7.1)

since we can move the suffix n freely up and down, on account of the con-
stancy of the h,,,. Interchanging y and o in (7.1) we get

ga‘v,u = yn,auy:lv + yn,vuy:.a' (7'2)
Interchanging v and ¢ in (7.1)

Guay = YnprVee T YnovYiu: (7.3)



