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Dedicated to Professor E. Heinz



PREFACE

These lecture notes have been written as an introduction to the characteristic theory for
two—dimensional Monge —Ampére equations, a theory largely developed by H. Lewy and E. Heinz
which has never been presented in book form. An exposition of the Heinz—Lewy theory requires
auxiliary material which can essentially be found in various monographs, but which is presented
here, in part because the focus is different, and also because these notes have an introductory
character and are intended to be essentially self contained: Included are excerpts from the
regularity theory for elliptic systems, the theory of pseudoanalytic functions and the theory of
conformal mappings. References are usually scarce in the text; the sources are listed in the
introduction.

These notes grew out of a seminar given in the Department of Mathematics of the University of
Kentucky in Lexington during the Fall of 1988. I gratefully acknowledge the support of N.S.F.
grant RII-8610671 and the Commonwealth of Kentucky through the Kentucky EPSCoR
Program. It is a pleasure to thank Ronald Gariepy for inviting me to give the seminar, and I wish
to express my sincere gratitude to all participants for their warm hospitality. Special thanks also
to David Adams, Craig Evans and Neil Trudinger, whose interest encouraged me to actually write
these notes. I am grateful for the corrections of George Paulik, and I appreciate the patience and
dedication of Julie Hill in typing the bulk of the manuscript.

Iowa City, May 1990



INTRODUCTION

An outline of the book, some historical remarks and the sources are given in this introductory
section.

The present notes are mainly concerned with the "characteristic" theory for elliptic Monge —
Ampére equations. This theory was largely developed by H. Lewy [L3,4] and E. Heinz
[H1-3,5-7,11,12], motivated and based on the characteristic theory for hyperbolic equations as
presented in Courant—Hilbert [CH] and Hadamard [HA 2] and on the "characteristic" theory
for hyperbolic surfaces as developed by Darboux [DB] and F. Rellich [RE2], who made the
connection between the characteristic theory for differential equations and the surface theory.

Most noteworthy seems to be Appendix 4 to Chapter V of [CH] concerning the special role of the
hyperbolic Monge —Ampére equation in the characteristic theory, namely the fact that the
characteristic system of this fully nonlinear equation consists of only five equations instead of
eight, a property that it shares with quasilinear equations. This fact was instrumental when Lewy
founded the "characteristic" theory for elliptic Monge —Ampére equations.

Remarkable, and nowadays standard knowledge, are Appendices 1 and 2 to Chapter V of [CH]
on Lewy's method [L2] to accomplish the change from the hyperbolic to the elliptic case via a

complex substitution.

In the "characteristic" theory for hyperbolic surfaces, asymptotic line parameters are constructed.
A complex substitution (Rellich [R2]) yields the "elliptic" case of convex surfaces, in which the
"characteristic" variables are the conjugate isothermal parameters.

To be more precise, when introducing conjugate isothermal parameters x, y for a locally convex
surface ¥, the second fundamental form

(1) Iy, = Ldu® + 2Mdudv + Ndv?
is reduced to

(2) Iy = A(dx® + dy?), A>0.
)

The mapping (u(x,y),v(x,y)) satisfies a second order elliptic system, which can be written in the

form

3) Lu=T], [Du|? + T}, Du-Dv + 1Y, |Du|?,
“ Lv=T2 |Du|® + 1%, Du- Dv + I, [Du|?,
LR )]

JK



Here K is the GauBl curvature and the Fli(j’ s are the Christoffel symbols of the first
fundamental form

(6) Iy = Edu® + 2Fdudv + Gdv®.

The fact that the coefficients of the system (3,4) depend only on the coefficients of the first
fundamental form (6) and their derivatives is truly remarkable, a theorema egregium in the sense
of Gaus8.

The "Darbouxsystem" (3,4) is the harmonic map system if K is constant. It can be derived at
least formally by a complex substitution from the classical Darboux system for hyperbolic surfaces
[DB].

The main thrust of the present notes is to present the Heinz—Lewy "characteristic" theory for
elliptic Monge —Ampére equations. Consider the characteristic form

2 2

(7) ds? = (14 C)dx® + 2(s—B) dxdy + (t+A)dy
- 2 2

(8) = adx” + 2bdxdy + cdy

associated with the elliptic Monge—Ampére equation

(9) Ar+2Bs+Ct+ (1t —s°) =E,

or equivalently

(10) (r+C)(t+A) — (s—B)2 = A,

(11) A=AC-B2+E>o0,

for a give-n solution z = z(x,y). Here p= By A= 2y, 1= 2y, § = Zyy? t = Zey New variables
u, v are introduced such that

(12) ds? = A(du® + dv?), A #0.

We shall call the parameters u, v '"characteristic", although not in the literal sense. Thus'a
conformal map with respect to the Riemannian metric ds® is constructed and the corresponding
Beltrami system is

bx_ +cy
(13) xuz_"___!,
VA
-bx —cy
(14) X = L 4



Xl

As far as the Monge—Ampeére equation is concerned, one wishes to obtain information about the
second derivatives, i.e., about the coefficients of the characteristic form. This means that the
coefficients of the Beltrami system are "unknown". The difficulty is resolved by the observation
(a theorema egregium of sorts) that the inverse mapping (x(u,v), y(u,v)), in addition to solving
a Beltrami system, satisfies a quasilinear elliptic system of second order with quadratic growth in
the gradient of the solution mapping of the form

(15) Lx=h1|Dx|2+h2Dx-Dy+h3|Dy|2+h4DxADy,
(16) Ly:fllle|2+ﬁ2Dx-Dy+53|Dy|2+ﬁ4DxADy,
_ 1 (a0 d i) a
() L=z lmlmwm] + & [ww] )
The coefficients hl""’ﬁ4 can be computed in terms of p, q and certain derivatives of A, B, C

and A. The "characteristic" system (15,16) reduces to

(18) Lx=0,
(19) Ly =0

in the case of the simple Monge —Ampére equaiion
(20) rt—s2=A>0.

This means that one should study diffeomorphic solutions of quasilinear elliptic second order
systems. The corresponding conformality relations can be written in the form

yE AxE
-B _ Dx:-D
22 S
(22) A j‘(_ljx’yv
(23) r+C_ ID 2
JE X,y ’
(24) J(xv)I):xuyv_xvyu’

and they can be used as a "dictionary", namely to translate the information obtained for the
second order system, such as regularity or a priori estimates, into information for the Monge —
Ampeére equation.
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It turns out that the regularity theory for Monge —Ampére equations can be presented much more

directly by studying the Legendre—like variable transformation

(25) u=x,

(26) v=q

for the simple Monge —Ampére equation (20). This is of course motivated by the characteristic
theory. The "characteristic" system (18,19) is replaced by the equation

(27) +(Ay,), =0.

Yuu
This and the extension to general Monge—Ampére equations (9) are the contents of CHAPTER 3.
The Campanato regularity technique is developed for Monge —Ampére equations, thus providing a
scheme to prove sharp a priori estimates assuming the knowledge of bounds for the absolute values
of the solution and its derivatives up to the second order. In order to continue paraphrasing
Lewy's remarks from 1934 ([L3] loc. cit.) it seems, however, that the estimation of the second
derivatives themselves requires much deeper insight. Purely local second derivative estimates can,
at this point in time, only be shown via the characteristic theory which is the topic of Chapter 9.
The Schauder technique could have been employed to yield the a priori estimates mentioned above
(see Schulz [SZ3]), but, it seems, not the regularity results. The presentation of Chapter 3 is
based on Schulz [SZ1-4] and Schulz-Liao [SL]. Historical references for the Legendre—like
transformation (25,26) are Darboux [DB], Heinz [H5], Hartman—Wintner [HW 1,3], Jorgens
[JO1].

Chapter 3 requires the regularity theory for linear elliptic equations, in particular the Campanato
technique. This is presented in CHAPTER 2 based on Campanato [C3,4] and Giaquinta [GI].

Basic tools, in particular the concept of Holder continuity, which are needed in Chapter 2 and
later are presented in CHAPTER 1. The sources are: Campanato [C1,2], Evans—Gariepy
[EG], Giaquinta [GI], Gilbarg—Trudinger [GT] and Heinz [H2].

Quasilinear elliptic second order systems are studied in CHAPTERS 2, 5 and 8. In Chapter 2
(Section 4), the regularity theory for univalent solutions is presented based on Schulz [SZ5]. In
Chapters 5 and 8 diffeomorphic solutions of Heinz—-Lewy type systems (15,16) are studied., The
non —vanishing of the Jacobian is shown together with an a priori estimate from below. C?]iaptor 5
deals with a special case which can be proved with the similarity principle. The reference is Heinz
[H2]. Chapter 8 is about the general case without the similarity principle. The presentation is
based on Heinz [H6,11] and Schulz {SZ5]. The general case via the similarity principle is not
presented here. This topic would be an extension of Heinz [H12]. The fundamental historical
reference is Lewy [L4], whose ideas are incorporated in the text, in particular in the proof of
Proposition 8.1.2. Other references are Berg [BG| and Bers [BS 3], who studied univalent
solutions of linear systems.



Xl

Function theoretic tools which are needed in Chapter 5 are presented in CHAPTER 4. The main
theorem is the similarity principle for pseudoanalytic functions by Bers and Vekua [BS1,2],
[VE1,2], a d—proof of which is presented, and a Harnack type inequality. The sources are:
Bers [BS2], Goursat [GO], Heinz [H2] and Vekua [VE2].

Tools needed in Chapter 8 are presented in CHAPTER 7. Function theoretic properties of elliptic
equations are presented which cannot directly be derived from the similarity principle. The local
behavior of functions satisfying elliptic differential inequalities is studied. The sources are:
Hartman—-Wintner [HW 2], Heinz [H6] and Schulz [SZ5].

Conformal mappings with respect to a Riemannian metric are studied in CHAPTER 6. The focus
here is however somewhat different than in the standard literature about the Riemann mapping
theorem. Our interest lies in the connections between uniformization and second order elliptic
systems. The sources are: Ahlfors [AF], Heinz [H3], Schiffer—Spencer [SHS], Schulz [SZ6]
and Vekua [VE2]. Some results are used in Chapter 7, but the major applications are presented
in Chapters 9 and 10, namely the connection between Monge —Ampére equations and quasilinear
elliptic systems and the role of the Darboux system in the theory of convex surfaces.

CHAPTER 9 can be considered the core of the current notes. It is concerned with the
characteristic theory for elliptic Monge —Ampére equations as outlined at the beginning of this
introduction. Characteristic parameters are introduced by employing Chapter 6. The results of
Chapters 2, 5, 8 on second order elliptic systems are translated into results for Monge —Ampere
equations via the conformality relations (21,22,23). A priori estimates are thus derived for the
absolute values of the second derivatives r, s, t of solutions of Monge—~Ampeére equations. The
presentation is based on Heinz [H3,7] and Schulz [SZ6].

Some geometric applications of Chapter 9 are discussed in CHAPTER 10, such as convex graphs
of prescribed Gaufl curvature and convex surfaces via the Darboux equation (a Monge—Ampére
type equation which is different from the Darboux system). The main thrust of this chapter
however is the investigation of locally convex surfaces without utilizing Monge —Ampére
equations. Conjugate isothermal parameters x, y are introduced, and the Darboux system (3,4)
is derived as the "characteristic" system. A priori estimates are derived for the coefficients of the
second fundamental form (1). This is based on Heinz [H6] and Schulz [SZ7].

Many interesting topics could not be covered in these lecture notes, most notably the special case
of harmonic mappings, Jorgens's theorem for the equation rt —s2 =1 and app]ications‘/to
minimal surfaces. The investigation of the differential inequality a <rt —s2< 4 would have high
priority for inclusion in an expanded version of these notes.

In addition to listing the sources at the end of the notes, the BIBLIOGRAPHY includes some
related work, in particular two—dimensional Monge —Ampeére equations and classical surface
theory in three—space. The focus here is two—dimensional and work on multidimensional
problems was not included.



XV

The notation used is usually explained as it occurs. Because of the variety of the topics presented,
we experimented with various notation such as complex, two—dimensional and multidimensional
index notation. For most of the more subtle sections, it seemed necessary to employ the
two—dimensional notation used in this introduction. There is a NOTATION INDEX on page 121,
basic notation is explained on the following page.



XV

BASIC NOTATION

Bp = BR(x) is the open ball or disc in R" of radius R centered at x (n > 2).
A = A(x) is an open neighborhood of x, i.e., an open set containing x.

2 denotes an open subset of IRn; Q is a domain if it is also connected.

Q' cc 2 means that the closure of ' is compact and contained in .

€ is the ith standart unit vector in R™.

x| = (%) for a point x = (x,...,x,) in R

|| =a+...ta for a multiindex a=(al,...,an) in 1", a2 0.
x¥=x%.. . .x%,
1 n

Dgu = du/dx,, Dy = (?zu/@xa(?xﬂ,... (B,...=1,...,n).
Du = (Dlu,...,Dnu) is the gradient of u.

D% = 6'“'/0)(‘11‘...&?1’“ for a multiindex a = (a},..., ).
Cll(OC(Q) is the set of functions having continuous derivatives of order < k in © (0<k<w).

Ck(ﬂ) is the set of functions in CII(OC(Q) with finite CX—norm

k k
L «
lull = 2 [D*u| = 2 sup sup |D%]|.
C (Q) =1 =1 lllf|=ﬂ 0
Cg(Q) is the set of functions u in Cll(oc(ﬂ) with compact support in €, i.e., the closure of the

set on which u# 0 is compact (and contained in ).
Cll((’)é(ﬂ) is the set of functions in CII(OC(Q) whose KR order derivatives are Lipschitz continuous
in every ' ccf.
LP(Q) is the set of equivalence classes of measurable functions u on € which agree a.e. with
finite LP —norm
o, =[] leoirad "
LP(0) 0

Note: In practice we usually do not identify two LP —functions which agree a.e. and work instead
with the precise representative which is given by the Lebesgue differentiation theorem.
LII’OC(Q) is the set of functions in LP(Q') for every Q' cc Q.
supu denotes the essential supremum of u, i.e. the quantity esssupu = |[u*|| o ).
Q L*(Q
oscu is the essential oscillation of u in 2, i.e. equal to essoscu = supu —infu.

Q

2
C = C(...) denotes a constant which depends only on the quantities that are listed in

parentheses. The letter C will denote various constants which may change from line to line. We
choose constants to be > 1, if possible. Generic constants that are < 1 are usually denoted by
the lower case letter c.
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Chapter 1. INTEGRAL CRITERIA FOR HOLDER CONTINUITY

1.1. Sobolev functions
Let © be an open set in R", n> 2, witha typical point denoted by x = (xl""’xn)' The

Sobolev space Wk’p(Q), k=0,1,2,..., 1 <p <, is the space of functions u € Lp(ﬂ) with
weak partial derivatives up to order k in Lp(Q). Here, for any multiindex « = ((_yl,...,an)

with |a| = ot ot v= D% = 6la|u/0x(f’...8xg" is the o' weak derivative of u in
O if
(1.1) J V17dx=(—1)|0|J uD%)dx

Q Q

for all pe CE’)"(Q).

The function u belongs to Wll((’) () if ue \V]‘ P(Q") for each Q' cc Q. Vector valued

’ll\ N

Sobolev functions u = (ul, 1) € Wk‘p(Q,IR ) are defined in the obvious way.

Wk’p(ﬂ) is a Banach space if equipped with the Sobolev norm

/
(12 ot = ol e o = (] J 10%uiPax)

|a|<k

for 1 <p <o, and, with sup denoting the essential supremum,

(1.3) lull, =llull . =sup J [D%].
’ WERQ) Q) i

Wg’p(ﬂ) is the closure of C‘S’(Q) in the space Wk‘p(Q).

Sobolev functions can be approximated by smooth functionson Q: If 1 <p < w, then a theorem
of Meyers—Serrin [MS] states for arbitrary € that

(1.4) wkP(q) = HEP(q)

which is the completion of {u € Cll(oc(ﬂ) [ lull, 5 o} with respect to the norm || - ||, . In
the case p = w,

k,oo k-1,1
(1.5) wieg) = el ©),

the space of functions whose (k—l)St derivatives are locally Lipschitz continuous in 2.

A Sobolev function of class W} p(IR") is precisely represented by a function u which is locally

absolutely continuous on almost all lines, i.e., ui(t) =u(...,x X; ..) is absolutely

. t
-1
continuous on compact subintervals of R for almost every (xl’ C XX

X and

1 %)

n
Du, € LY (®").



1.2. The Dirichlet growth theorem
Let Bp = BR(x) be the open ball of radius R in R™ centered at x, and let

(1.6) U R = fB u(y)dy = TBlEJB u(y)dy .
R

Definition 1.2.1. Let x be a constant, 0 < g < 1. A function u: @ — R is Holder continuous
with exponent g in Q, if the quantity (Holder seminorm)

Q u(x')—u(x")]
(1.7) (u]’’ = sup
Foox x"e@ |x' —x"|#
x'#x”

is finite. u is locally Holder continuous in €, if u is Holder continuous in every ', Q' cc Q.
Ck’u(ﬂ) (Cll((’)/é(ﬂ)) is the set of functions u € Ck(Q) (Cll(oc(ﬂ)) whose k™ order derivatives are

(locally) Holder continuous with exponent g in Q (k=0,1,2,...). The Ck‘”—norm of u is

supk[D"u]ﬁ.

)
8 = D -
(1.8) ”u“Ck’”(Q) HUIle(Q) +[D ], IIUIICk(Q) + sup

The following "Dirichlet growth theorem" by Morrey (see [MO2]) guarantees Holder continuity
of certain Sobolev functions:

Theorem 1.2.2. Let u € Wl’p(Q), 1 <p < w Suppose that for some constants ju, M, 0 < <1,
M >0,

(1.9) J |Du|Pdy < MPRPPHPA
By
for all balls Bp in Q. Then ue C(l)élé(ﬂ)’ and in each ball By with Byp €, the estimate
(1.10) oscu < CMR¥
By

holds with a constant C which depends only on n, p, u.

Proof: By approximation, we may assume that u € C}OC(Q). Let B3R(x0) C 2 and let
x' € BR(xo). Then BR(XO) C B2R(x’) cQ, and

)—u(x)| < |u(x’)—ux07R| + |u(x0)—ux0’Rl

luy)=uCe) Ay +f ) =uteg)] dy-
RX

or(X") 0



To estimate an integral of the form

note that
1
(1.11) ) =u()] € | IDuGc+ L)) eyl

By integrating with respect to y over BR(X)’

1
JBR(X)Iu(y)—u(x)I dy < JOJBR(X)|Du(x+t(y—x))| |ly—x| dydt

1
= [ IDu(©)] 16-x] deat
0 BLR(X)

SJ(l)t_n—l ”BtR|Du|Pd£]1/P ”Btllf_xlp/(p—l)dg](p*l)/pdL

< CMJ(I) 1L () (0=PHPH)/P (1) (n+P/ (P—1))(P—1)/P g

1

—CM R"+”J gy
0

< CMRDTH,

incorporating the assumed "Dirichlet growth." The theorem follows. o

1.3. Poincaré inequalities

Lemma 1.3.1. Assume that u € CI(BR), Bp = BR(XO). Then the inequality

(112) J | 1) =uto1Pay <OR™P [ gpuy) P 1y—x] Ty
R R

holds for all x € BR with a constant C which depends only on n, p.

Proof: Recall (1.11), which implies, by Holder's inequality, that

1
o) =u() 1P < J [Duget (v =) Pat Jy=x(P.

By integrating with respect to y over 6Br(x)nBR, 0 <r<2R,



