Edited by S. Martellucci
and A. N. Chester

PHYSICAL SCIENCES




Nonlinear Optics
and Optical Computing

Edited by
S. Martellucci

The Second University of Rome
Rome, ltaly

and

A. N. Chester

Hughes Research Center
Malibu, California

Plenum Press ¢ New York and London



Library of Congress Cataloging-in-Publication Data

Course of the International School of Quantum Electronics on Nonlinear
Optics and Optical Computing (13th : 1988 : Erice, Italy)

Nonlinear optics and optical computing / edited by Martellucci and
A.N. Chester.

p. cm. —— (Ettore Majorana international science series.
Physical sciences ; v. 49)

"Proceedings of the Thirteenth Course of the International School
of Quantum Electronics on Nonlinear Optics Computing, held May
11-19, 1988, in Erice, Italy"--T.p. verso.

Includes bibliographical references and index.

ISBN 0-306-43585-3

1. Nonlinear optics--Congresses. 2. Optical data processing-
-Congresses. I. Martellucci, S. II. Chester, A. N. III. Title.
IV. Series.

QC446.15.C68 1988

621.39'1--dc20 90-7306
CIP

Proceedings of the Thirteenth Course of the International School of
Quantum Electronics on Nonlinear Optics and Optical Computing,
held May 11-19, 1988, in Erice, Italy

© 1990 Plenum Press, New York
A Division of Plenum Publishing Corporation
233 Spring Street, New York, N.Y. 10013

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording, or otherwise, without written permission from the Publisher

Printed in the United States of America



PREFACE

The conference '"Nonlinear Optics and Optical Computing'" was held May
11-19, 1988 in Erice, Sicily. This was the 13th conference organized by
the International School of Quantum Electronics, under the auspices of the
"Ettore Majorana'" Center for Scientific Culture. This volume contains both
the invited and contributed papers presented at the conference, providing
tutorial background, the latest research results, and future directions
for the devices, structures and architectures of optical computing.

The invention of the transistor and the integrated circuit were
followed by an explosion of application as ever faster and more complex
microelectronics chips became available. The information revolution occa-
sioned by digital computers and optical communications is now reaching the
limits of silicon semiconductor technology, but the demand for faster com-
putation is still accelerating. The fundamental limitations of information
processing today derive from the performance and cost of three technical
factors: speed, density, and software. Optical computation offers the
potential for improvements in all three of these critical areas:

Speed is provided by the transmission of impulses at optical veloc-
ities, without the delays caused by parasitic capacitance in the case of
conventional electrical interconnects. Speed can also be achieved through
the massive parallelism characteristic of many optical computing architec-
tures;

Density can be provided in optical computers in two ways: by high
spatial resolution, on the order of wavelengths of light, and by computa-
tion or interconnection in three dimensions. In general, optical computer
architectures avoid the yield and rework difficulties often associated
with densely packaged electronic devices; and,

Software is facilitated in optical computers, as in some electronic
computers, through the use of highly parallel architectures, and through
the use of adaptive, self-programming configurations analogous to networks.

Before optical computer benefits can be realized in practice, consid-
erable development is needed of the devices, structures, and architectures
which only exist in research laboratories today. Fortunately, a strong
foundation already exists in these areas, and this book treats both the
fundamental devices and the computing architectures which will make
possible the advanced computers of the future. Due to the peculiar charac-
teristics of this rapidly developing field, we did not interfere with the
original manuscripts in editing this material and wanted only to arrange it



without reference to the chronology of the conference into five categories:

1) "Optical Nonlinearities and Bistability', a group of five papers
emphasizing nonlinear Fabry-Perot resonators and other bistable struc-
tures, which could serve as basic logic and memory elements;

2) "Quantum Wells and Fast Nonlinearities', four papers describing quantum
well structures and the fast nonlinear effects they exhibit;

3) "Optical Computing, Neural Networks, and Interconnects', a set of four
papers covering optical computer architectures, optical interconnects,
and their practical implementation;

4) "Materials and Devices", three papers treating lasers, nonlinear
fibers, and nonlinear effects at surfaces, as possible elements for
optical computation; and

5) "Suggestion for Further Reading', two papers containing an extensive
annotated bibliography on nonlinear optical activity and nonlinear eigen-
polarizations, and additional selected references on optical computing
using phase conjugation.

These papers, and the further references therein, should form a
useful guide to today's research results, and the basis for future
advances in optical computers.

Before concluding, the Editors acknowledge Miss R. Colussi, who
voluntereed to retype and revise the entire volume, as well as the
continuous assistance of the Plenum Editor (J. Curtis); they wish to express
sincere appreciation to Prof. A. M. Scheggi, the Scientific Secretary of
the conference, and to Mrs. V. Cammelli for the very specialized assistance
in the successfull organization of the conference. Thanks are also due to
the organizations who sponsored the conference; among them, the Ettore
Majorana Centre for Scientific Culture, whose support made the conference
possible.

The Directors of the Int'l School of Quantum Electronics:

A. N. Chester S. Martellucci
Vice-President and Director Professor of Physics

Hughes Research Center The Second University of Rome
Malibu, California (USA) Rome (Italy)

November 15, 1989
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THEORY OF OPTICAL BISTABILITY AND OPTICAL MEMORY

W.J. Firth

Dept. of Physics and Appl. Physics, Univ. of Strathclyde
Glasgow G4 ONG, Scotland, U.K.

I. INRODUCTION

Optical bistability (OB) characterises an optical system with two
possible state outputs for a single input1'3. This phenomenon, and its
possible applications to optical information processing, was proposed
nearly two decades agoA. It has since been demonstrated in a wide variety
of systems and media, including vacuum and malt whisky!

Two objective of this presentation is to review the basic physics of
OB with emphasis on those features and systems most relevant to informa-
tion processing. There will thus be a bias towards small systems exploiting
electronic nonlinearities, especially semiconductors. The seminal theoret-
ical and experimental work in two level systems such as Na vapourl_3, and
the important field of instabilities in OB systemss, will be largely
neglected: see Lugiato for a detailed reviews.

This short review begins with perhaps the simplest model of optical
bistability6 which displays rather general features’ in a direct manner.
Most OB systems involve a resonant cavity, and the basic theory of absorp-
tive and dispersive OB in cavities is presented, leading on to questions
of optimisation8 and the mapping of OB output states on to logic func-
tions’. I then analyse switching dynamics, which leads to slowing-down
phenomena and gain-bandwidth considerations ~. The possibility of com-
peting nonlinearities (e.g. electronic and thermal) is considered, which
can lead to self-oscillation but also has important implications for
design of optical processors

The minimum size of OB devices is determined by the transverse coupl-
ing mechanisms: both diffractive and diffusive mechanisms are analysed, and
hysteresis loops and beam profiles obtained numerically are discussed™’
Diffusion-dominated OB presents an interesting and practical limit in which
key features of optical memory devices can be analysed. In particular
switching-wave phenomena imply that large-area memory and image processing

Nonlinear Optics and Optical Computing
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devices must be "pixellated" into arrays of OB elementsls’lé, while minimum
pixel spacings in such arrays can be inferred by analogy with nonlinear
dynamical systems . Similar considerations arise for diffractive coupling,
with the extra feature that a self-focussing type of nonlinearity leads

to the spontaneous formation of soliton-like structures = “°. Both as
"intrinsic pixels" and in their own right as nonlinear wave phenomena,
these are among the most significant current developments in the theory

of optical bistability.

II. SIMPLE MODEL

As a simple and instructive model for OB, consider a slice of mate-
rial, thickness L, on which a plane wave of intensity I0 is incident. If
the absorption coefficient o depends on temperature ¢, then

& - (o S

Clearly ¢ will in turn depend on the absorbed energy, and may be crudely
modelled thus:

gg - =

at T T(e-ey) = I,£(s) (2)
where ¢, is the ambient temperature, while f(¢) is proportional to the
bulk absorption rate ~(1-e"®L) and ™! is the thermal time constant. In
steady state, (2) leads to

(F/IO) (¢'¢0) = £(¢) (3)

Similar equations to (3) govern most OB systems (¢, not T, is used so
that these equations can be used below in other contexts), and graphical
solution of such equations is instructive (Fig. 1). Each possible steady
state is represented by the intersection of a line through (¢,,0) of slope
~IO , with the response function f(¢). There are evidently multiple inter-
sections for I, large enough provided f(¢) is sufficiently steeply increas-
ing over a suitable range of ¢. For bounded f(¢), there are an odd number
of intersections: linearisation of (2) around these roots enables their
stability to be determined. Suppose that ¢S solves (2), and let

_ +At
b =9, +ce

Substituting into (2):
At A 2
(AMT)ee” = Iof'(¢s)€e £ + 0(g”)
and hence
= ! -
A Io(f (¢S) F/IO).

If A<0, the perturbation damps out, and ¢s is stable, and vice versa. By
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Fig. 1. Graphical solution of Eq. 3. The straight line's inter-
sections with the response function give one, three or
more solutions.

comparison with (3) and Fig. 1 it can be seen that when the line cuts f(¢)
"from below" the corresponding state is dynamically stable, and vice
versa’. Thus the middle intersection in Fig. 1 belongs to an unstable
state, while the other two are stable, and we indeed have optical bista-
bility.

While not necessarily very practical, this simple model illustrates
key features of OB:

(i) nonlinearity - of the light-matter coupling function f(¢)

(ii) feedback - symbolycally (1) and (2) represent a feedback loop:

(od

matter

Both features seem necessary for OB: in fact the feedback is commonly
explicit, as when the nonlinear medium is enclosed in a cavity structure.
In such a structure the response is sensitive to the phase, as well as the
intensity, of the optical field. OB can then arise from nonlinear refrac-
tion (Kerr effect), with the cavity Airy function as the appropriate re-
sponse function, and also from saturable absorptiona. These schemes are
known as dispersive and absorptive OB respectivelys.

ITI. CAVITY OPTICAL BISTABILITY
Cavity OB has been analysed many times!™ so a complete treatment is
not necessary here, but it is worthwhile to develop the usual model.

Consider a two-level atomic system enclosed in a ring cavity. On the
assumption that the polarisation may be adiabatically eliminated (certain-
ly valid in condensed media) the Maxwell-Bloch equations reduce to a pair
of coupled delay-differential equationsz.

E(t+tr) = A+ ReieE(t)exp[-% (1-i8)D(t)] (4)



() = 1-D(t) - |E(t) | [1-exp(-aLD(t)] /oL (5)

E(t) is the scaled field amplitude on entrance to the nonlinear medium,
which has length L and small-signal absorption coefficient a. E is scaled
to the saturation intensity I. D(t) is the spatially-averaged population
inversion which is seen from (5) to be normalised to unity for E*0, and T
is its decay time. The cavity has round trip time tg, mistuning para-
meter 6 and R=(R,R,)? where R.,R, are the input and output mirror reflec-
tivities. A is the scaled input field entering the cavity, and thus equal
to (1- Rl)iEin. Finally A is the scaled detuning from the atomic reso-
nance: A=0 gives a purely absorptive effect, while |A[>>1 makes dispersive
effects dominant.

Other nonlinear media give qualitatively similar equations, perhaps
with o and A empirically determined, as in semi-conductors

For condensed media in short cavities, <<t is normal, so that the
left side of (4) may be approximated by E(t). E(t) may then be eliminated
from (5) to yield, in terms of the convenient new variable ¢ = (1-D(t))

b+ Lo = 1pE(X) (6)
(1-R1)(1—e‘“L ey /0L,

where I, = |E, |2IS, and f(¢) = (7)

0 =g TIsll—bexp[aL(l-iA)¢/2]lz

where b = Re18 exp [-uL(l-iA)/Z].

Equation (6) is evidently formally identical to (2), and thus OB
will exist provided f(¢) has a suitable form. Since the numerator of (7)
decreases monotonically with ¢, and is zero at ¢=1 (complete saturation),
OB relies on the denominator more than compensating this decrease. The
denominator is, physically, the ratio of the input to the internal inten-
sities, and exhibits a cavity resonance structure. Fig. 2 shows f(¢) for
two important special cases, A=0 (purely absorptive OB) and A=15 (largely
dispersive OB). In the latter case f(¢) is oscillatory, leading to multiple
intersections for I, large enough. In fact, in the dispersive or Kerr -
limit: |aL|»0, [A|»x, |aLA|~1, £(¢) becomes simply the Airy function govern-
ing the spectral response of an optical cavity, while the nonlinearity can
be described by an intensity-dependent refractive index: n=n0+n21. This is
a favourable and practically-important limit.

The above analysis assumes a ring cavity configuration, whereas OB
experiments, especially those in solids, generally use a Fabry-Perot or
folded cavity. To a large extent, this leads to the same OB phenomena as
the ring cavity, but with rescaled parameters: in particular the inversion
is driven by both forward and backward propagating fields, while the fields
accumulate nonlinear phase and amplitude changes over 2L instead of L:
both favourable effects. Standing-wave effects in principle lead to a
spatial modulation of the inversion with period A/2: this seriously com-



plicates the analysis, but fortunately in many cases the inversion popula-
tion is sufficiently mobile that diffusion '"washes out'" the population
grating, leading back to quasi-ring-cavity behaviour. A more subtle change
is that the space-time averaging implicit in D~ is no longer valid, and
both field and population have to be considered as function of z, the
longitudinal coordinate, necessitating approximations or numerical solu-
tion or both.

Finally, it should be noted that the above analysis works just as
well for ol negative, i.e. an amplifying medium, as for an absorbing
medium, provided that |b|<13;b = 1 is just the laser threshold. This is
important for a number of practical reasons, not least of which is that OB
in semiconductor laser amplifiers has extremely low switching powers and
energies“ "

Bistability evidently implies a binary memory capability: other logic
functions can be performed in OB or closely-related states. For example,
the reflected and transmitted beams from a Kerr cavity have the basic
response features sketched in Fig. 3, whose shape clearly allows digital
optical logic to be performedg.

Sequences of input-output curves such as those in Fig. 3 are obtained
experimentally by tilting, heating or otherwise varying the cavity mis-
tuning 6. One finds a maximum loop size at fixed Iy, and a minimun Ig
below which OB vanishes, corresponding to coalescence of the three inter-
sections in Fig. 1. It is then of interest to optjimise this minimum with
respect of other parameters. Miller and Wherrett have analysed this
problem for Kerr cavities and find that it is possible to decouple the
microscopic and macroscopic aspects, so that the material nonlinearity and
cavity can be separately optimised. Miller finds that R e_uL is optimum
for passive cavities, while Wherret emphasises that the contrast of OB
loops is much larger in reflection than transmission if al is appreciable.
Adams22 considers the behaviour of OB amplifiers, which have lower thres-
holds for small R, in contrast with passive cavities, where large R and
low absorption gives lowest thresholds“".

f f(o

Fig. 2. Response function f(¢) for a 2-level system in an optical
cavity - equation (7) - for R=0.9, aL=3 and A=0 (left);
A=15 (right). Intersecting line indicates bistability.



IV. SWITCHING DYNAMICS

The cycle time of the OB system described by (1,2) will be of order
I ~, i.e. controlled by the thermal time constant. With good design this
can be submicrosecond, but faster cycling is generally sought via elec-
tronic excitations in, especially, semiconductors. One can infer from
(2), however, that IO/Fn:constant, i.e. that bandwidth and power are
roughly proportional, which is a good rule-of-thumb. This rule works also
for (7), since Isﬂ’r_l (ref. 5).

It follows from our stability analysis of (2) that fluctuations
around the steady state ¢ damp at a rate
s

= - 1 .
F &I Iof (¢S)

I changes sign at a switch point, where the line is tangent to f(¢)
in Fig. 1, and is thus small in its neighbourhood, which leads to the
phenomena of critical slowing-down and critical fluctuations well known in
phase transition theory. At the switch point the perturbation analysis has
to be taken to second order, leading to a prediction that when the inten-

sity is stepped from below the threshold value Ith to above that value,

_1
the switching times scale as (IO-I ) 2, which has been confirmed in a

1=3,25

th

number of systems

In the "transphasor" regime26, where the characteristic is not quite
bistable, the gain spectrum for a small modulation of Iy at frequency w can
be calculated as

Ni—

[gain|~/F/(FZ +w2)

which shows that high gain is available close to a switch point, but only
at the cost of a bandwidth narrowing in proportion. Nardone and Mande127
calculate nonlinear corrections to this gain which remove the singularity
as Fe+0.

Critical slowing down is manifested when the input is stepped to a
new, constant value. An interesting alternative is to consider an "address
pulse", i.e. a temporary step in I designed to switch the OB device from
its lower to its upper state. The first order character of (2) means that
whether or not the device switches depends entirely on the value of ¢ at
the end of the address pulse. If the three intersections with the line
describing the "hold" level IO are ¢, .0 then if at the end of the
address pulse ¢>¢m, the device will switch i.e.¢+¢u. Conversely ¢<¢_ leads
to a decay back to LI For $p~ b ¢ is small, and the system '"dwells" a
long time close to ¢_ . Mandel has analysed this phenomenon, and terms it
""slowing-down'". He shows that the dwell-time scales logarithmically, in
contrast 5% critical slowing-down. The effect has been demonstrated exper-
imentally . This shows, incidentally, that the unstable branch is phys-
ically observable, and can be traced out by analysis of slowing-down for
different IO and address-pulse area.
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Fig. 3. Reflected (left) and transmitted (right) intensity versus
input intensity for a Kerr cavity, for R-0.5, aL=0 and
6=-1.6 (bistable); 6=-1.1 (monostable).

We have so far assumed that only a single nonlinear effect is active.
In practice, there may be several: in particular in semiconductors elec-
tronic OB will inevitably be accompanied by thermal effects, which can
also influence the optical properties of the device. Suppose then that two
mechanisms are operative, one fast (electronic) and the other slow (ther-
mal), and that they have opposing effects. The dynamics can then be ap-
proximated by still using (2), but regarding the slow effect as a "bias"
of the response function f(¢). Since e.g. the thermal load will be dif-
ferent for the states ¢ , ¢u, these will have different bias, say 61, ]
corresponding to translation of f(¢) in Fig. 1.

u

Consider now a fast "electronic" switch-up. Initially the bias will

still be close to 92, but the device will begin to heat up, and 8 will
drift towards 6 . This means that f(¢) will move to the right in Fig. 1.
If |eu— 91| is large enough, OB will be lost, and the device will switch
back down (fast). It will then cool down, f(¢) will move left, and the
device will eventually switch up once more. This sequence can repeat in-
definitively as a self-sustaining oscillation.

This effect was predicted by McCalllz, and has been observed in a
number of OB systems - see Chapter 6 of Gibbs' book? for a review.

The presence of slower, possibly opposed, contributions to nonlinear-
ity is an important factor in the design of OB systems. As we have noted,
the strength of a given nonlinearity increases ‘as its response time is
lengthened, and vice versa. Since the response times of both electronic
and thermal excitations are sensitive to surface effects, the balance be-
tween these contributions to OB may be radically altered by system geome-
try. For example, '"pixellation'" of material to obtain high packing densi-
ties of OB devices (see below) will normally affect the response times of
both electronic and thermal excitations, and careful design will be neces-
sary to avoid instability in such systems.

This last consideration leads naturally to the topic of transverse
effects, which determine the minimum size of OB devices, and together with
the response time control the holding powers and switching energies which
will determine the viability of OB systems.



V. TRANSVERSE EFFECTS IN OPTICAL BISTABILITY

Transverse coupling, both within a single bistable element and
between adjacent elements, has a major influence on the nature and quality
of optical bistability in practical systems. Diffraction is the obvious
coupling mechanism, but in many systems the excitation is mobile enough
for transverse diffusion to be significant. This is the case for semi-
conductors such as InSb”™ ’“", where the excitation is an electron-hole
plasma and, indeed, for thermal devices such as interference filters~.

Basically, these transverse effects require the addition of a dif-
fraction term to (1) and a diffusion term to (2) or their generalisation.
For illustration, we concentrate on Kerr nonlinearity and Fabry-Perot
cavities.

In this case, the propagation equations for the forward and backward
(scaled) field amplitudes F(r), B(r) and excitation density h(r), in an
etalon of thickness L, may be expressed as

oF _  _[oL _ . 1.9 2

- [2 + ih(r) + 5 1}vt:IF (8)
3B L 1 2

3. [. 12— + ih(p) + 2 i3V ]B (9)
22 2 2

(zD V.- 1)h = —a}sgn(nz)(lFl + [B|7) (10)

Here o is the linear absorption coefficient and 3 = L/sz, where we assume
a gaussian input beam of width w, and scale transverse distances to w. Vt2
is the transverse Laplacian, and lD the diffusion length for the medium
excitation. These equations, together with Fabry-Perot boundary conditions
on F and B, and transverse and surface boundary conditions for h, are the
basis of our model for steady-state OB.

A brief discussion of possible approaches to solution of these
partial differential equations is appropriate: even in the steady state
they require substantial computer effort, especially in two transverse
dimensions. For the moment, consider 2.=0, i.e. the "diffraction-only"
case, in which (8) and (9) are third order in |F| and |B|.

Perhaps the simplest approach is mode-expansion, thereby reducing the
system to a number of ode's equivalent to the number of modes analysed.
Because, however, third order linearity couples three modes to a fourth,
the computation grows as N4 (see reference 31), and is thus only useful if
one mode is dominant, in which case the technique can work well32 and may
even yield analytic results33.

Even more straightforward is the finite-difference technique, which

is flexible and direct, and has proved useful for problems with cylindrical
symmetry34.
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