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Preface

This book grew out of experience gained in three decades of development of matrix structural
analysis, firstly as a research tool, then as post graduate lecture material and finally as an
integral part of the undergraduate curriculum. The basic building blocks of a unified theory for
structural analysis are to be found in matrix and linear algebra. It is with the use of matrix
theory that the duality of the concepts of equilibrium and compatibility can be brought
together via the principles of virtual displacements and virtual forces and expressed as the
contregredient law. For many of these basic ideas the author is indebted to Dr K. Liversley of
Cambridge University, Mr J.C. DeC Henderson formerly of Imperial College and the late Mr
R.S. Jenkins of Ove Arup and Partners. The spirit of the book is to look firstly at these
underlying principles of mechanics, developing them as a coherent and unified theory which
can then be used in the approximate solution of the partial differential equations of solid
mechanics, as applied to various structural forms such as skeletal frames, plates, shells and the
solid continuum.,

Because the line element structure (truss, frame and cable) plays an important role in the
teaching of elementary structural mechanics, this form has received a reasonable amount of
attention (Chapters 4, 5 and 6). The plan for the book then is to start with an introduction to
vector, tensor and matrix notations in Chapter 1, together with a discussion of the interpolation
theory which forms a basic part of the finite element method. In Chapter 2, the fundamental
theorems necessary to apply the principles of virtual displacements and forces to both discrete
and continuous structures are fully developed. It is found convenient to use the ubiquitous
Gauss divergence theorem for the latter case. Material constitutive laws are discussed and the
incremental elasto-plastic constitutive equations developed so that the reader will be able to
apply the theory to a variety of material models currently available.

Chapter 3 introduces the finite element method in a number of its forms, and the use of
the contregredient law in the development of the finite element stiffness matrices explored for
the displacement, hybrid and equilibrium types of element. With nearly 40 000 papers now
written on the finite element method this Chapter must by its very briefness be one of highly
distilled material.

Chapter 4 deals with the force method of analysis in abbreviated form. Although the
stiffness method has gained ascendency in use in the numerous computer software packages
commercially available for structural analysis, the principles of statics, deflection calculation
etc., are still taught in the first instance via the force method. Thus, there is still rationale for
an understanding of the force method and it is still valid to observe that computer software for
both the force and the displacement methods can be made to look identical at the user
interface. Only for large scale analyses does the displacement method have significant
advantages.



In Chapter 5 the displacement method is detailed and in this context attention is focused
on the direct stiffness method. It must be realized that the direct stiffness method is only the
name given to the process in which the various element stiffness properties are firstly
expressed in the common global coordinate system and then assembled via unit matrix
transformations which reflect the structure connectivity or topology.

In Chapter 6 some attention has been give to the calculation of elastic critical loads, not
only because this is a useful exercise, but also because it now proves to be a rather minor yet
elegant extension of the simple linear theory. A treatment has been given in this Chapter of the
geometric non-linear analysis, both for line elements and membrane shell structures, because
these forms have an important application to the shape finding, analysis and design, of tension
structures.

Chapter 7 deals with the finite element analysis of the solid continuum which of course
can be divided into the planar situations (plane stress, plane strain and axisymmetry), and the
three-dimensional stress state. A feature in this Chapter is the discussion of the natural mode
method of Professor J.H. Argyris which succinctly separates the rigid-body motion and
straining modes of an element. The St Venant’s torsion problem is analysed by the use of the
cross section warping displacement function, and the means given for location the shear centre
of those cross sections under St Venant’s torsion stress.

Chapter 8 introduces a detailed discussion of the small deflection plate bending analysis.
Because of its importance in understanding the bending action associated with shell behaviour
many element types are given, including the flat facet elements and the degenerated
isoparametric and heretosis elements. Comparisons of element computational efficiency and
accuracy are given. The DKL (Discrete Kirchoff with Loof nodes) is introduced as a possible
contender for the inclusion of plate elements in shell analysis via flat facet elements.

The analysis of shells is given in Chapter 9. With over 4000 papers now published on
shell theory it becomes necessary to give a brief review of the literature. This is followed by a
description of flat facet a type elements (plane stress plus plate element). Again the DKL
element is highlighted for some advantages it appears to possess for moment connections in
box type structures as well as in general shell analysis. It is similar to the Morley and semi-
Loof type elements in that it has the rotational nodal variables embedded in the element sides
rather than at the apex nodes. In looking at curved shell elements one has to make some
compromise between computational efficiency and accuracy on the one hand and practical use
on the other. It would appear that those elements which require high order derivatives in their
nodal variables have limited application. Thus the decision was made to give details of the
isoparametric shell element (Ahmad and Irons) and to give a reasonable discussion therein of
the problems of membrane and shear locking problems and the means to avoid these troubles.

In studying the book the suggested order is to first read Chapters 1-3, and if the
intention then is to pursue finite element analysis, to move to Chapters 5, 7, 8 and 9, in that
order. For a lower level of study one may choose parts of Chapters 1 and 2 and then move to
Chapter 4 and 5 to obtain a knowledge of matrix structural analysis as applied to line element
(skeletal) structures. It is strongly recommended that some of the material of Chapter 6 is
included to extend the student’s capabilities to the calculation of frame buckling loads.
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CHAPTER 1

Mathematical preliminaries

1.1 INTRODUCTION

In writing this book the intention is to assist the student in the learning process for structural and
finite element analysis, in which he must master, not only the numerical techniques available, but
also the mathematical skills necessary for the efficient description of the physics of the problem at
hand. As such it is a teaching book. The format, then, is first to present a discussion on mathemati-
cal preliminaries in which the concepts of vectors, tensors and matrices are introduced. Which nota-
tion should be used? Vector, tensor or matrix? The answer is not simple, and the three notations are
certainly not mutually exclusive. Following a discussion of the merits of the various notations, the
reader is introduced to the ubiquitous Gauss’ divergence theorem. This theorem forms the basis of
most descriptions of the integral of the rate of change of a variable over a region to its values on the
surface of the region. In structural mechanics the relationship has been discovered independently
and given such names as principle, of virtual displacements, principle of virtual forces. or simply
virtual work. The advantage of the more general formulation by Gauss is in its adaptability to a
variety of other physical situations where the concepts of static equilibrium are not available. In
structural mechanics it is possible to extend the concept of virtual displacements (forces) to the con-
tragredient principle which succinctly describes the relationship between statically equivalent force
systems and their compatible displacements. The contragredient principle can be loosely described
as a reflective principle (for the purposes of memory only). That is, if the force systems (P,0Q) are
connected through the relationship,

{P}=[BI{Q}
then the corresponding compatible displacements (p, ¢) are connected as follows:
lg}=1B1"{p}

Without the ability to apply both Gauss’ celebrated theorem and the contragredient principle,
the student’s capabilities of analysis are seriously restricted. The finite element method can be
classified as a means for the approximate solution of the partial differential equations of
mathematical physics. It requires the subdivision of the region under consideration into a number of
geometrically definable domains. In each domain, the unknown variables (for which the
approximation is desired), are expressed in terms of certain values (either generalized coordinates or
nodal values), by functions of the coordinate system. A study of this problem and the choice of
nodal values rather than generalized coordinates lead to the definition and construction of orthogonal
interpolation functions. The chapter concludes with a discussion of coordinate systems and the
various element domains (isoparametric and triangular) and the calculation of function derivatives
in, and integrals over, the domain. In subsequent chapters, the various physical situations
encountered in both line structures and continuum mechanics are introduced and their finite element
approximations discussed.



2 MATHEMATICAL PRELIMINARIES

An attempt is made to give a fairly complete description of a wide selection of finite element
types. In the first instance, attention is focused on small displacement, linear elasticity. In general
the emphasis will be on the displacement element formulation with compatible displacements at the
element interfaces. It will be shown that this approach may also be formulated as a Galerkin
method of weighted residuals (again a useful concept in non-structural applications). The discus-
sion will, however, by no means be restricted only to displacement models, and sections will be
reserved for discussions of the natural mode technique, developed by Argyris [1], and the hybrid
stress elements of Pian [2]. It may be pertinent at this stage in the book to draw the reader’s atten-
tion to the work, Energy Theorems and Structural Analysis by Argyris and Kelsey [3], published in
1959. The material in this work belies its title, and the work actually contains a very modern dis-
cussion of the matrix methods of structural analysis. Because the calculation of elastic critical loads
is merely an extension of the linear theory to include the effects of axial forces when the equilibri-
um equations are written in the deformed rather than the initial position, it is natural that the book
includes a chapter on critical load (or eigenvalue) calculation and the corresponding mode shapes.
This is a break in tradition from classical texts in that the computer has made the calculation of the
linear eigenvalue problem for the first critical load a simple extension of the first-order theory. Be-
cause the effectiveness of the finite element method lies in part in its successful application to
non-linear analysis problems of both a material and geometric nature, the text concludes with some
of the techniques currently available for these analyses. In particular a discussion is given of net
and membrane structures and shape finding techniques and of the non-linear analysis of structures
which may present rather mischievous behaviour in their load deflection relationships. The solution
to the transient heat flow problem and the related elasto—plastic thermal stresses will be given as an
example of the non—linear material behaviour.

1.2 NOTATION: VECTOR — MATRIX — INDEX
1.2.1 Vector notation

The concept of vectors arises from the geometrical representation of forces, displacements and their
time derivatives and from the parallelogram law of addition of such quantities. A vector is defined
as a quantity in space which has direction as well as magnitude, and it will be denoted by F.R,
etc. A point P_i)n space is defined by its position vector 7, as in Fig. 1.1(a). In Fig. 1.1(b). the vec-
tor addition of A and B is defined as

C=A+FB (1.1)
X,

P

= T

| g
+ X
I o A
e
v

X3
(a) Position vector T (b) Addition of vectors

Fig. 1.1 Vector components - vector addition.



NOTATION: VECTOR — MATRIX — INDEX 3

It is soon found, however, that further operations are necessary for the satisfactory manipula-
tion of vector quantities; the two most commonly used are the dot and cross products. The first pro-
duces a scalar and the second a vector.

Dot product
A-B =I1AlIBlcos © (1.2)

Cross product
Y

A xB =IAllBlsin 0 7 (1.3)

The sense of 72 in Fig. 1.2(b) is given by the right—hand screw rule from A to B. The use of

these two operators is illustrated in the examples which follow. Firstly, consider the position vector

7 given as the vector sum of its three components in the directions of the Cartesian coordinates
(\1 X, X3), base unit vectors (¢, é,, é5).

R B
\ n =
[y B \A *
TAvcos®
(a) Dot product (b) Cross product
Fig 1.2 Vector operations.
That is,
?=1‘|é1+,rzéz+,\'3é\3 (14)
The i th component of 7 is given by
X,':I_')'é\,‘ (15)
The magnitude of the vector F is given by
IFl=(F -F)* (1.6)

Consider now, the force vector F actmg through the point P, position vector 7. It is required
to calculate the moment vector /\70 of P’ about 0. From Fig. 1.3(a), the magnitude of this moment
is given by

where p is the perpendlculdr distance from O to the line of . The moment MU 1s perpendicular to
the plane of F and 7 and in the sense shown in Fig. 1.3(a). Thus,

Mol =P x F = IFllrlsin @ # = IF |pa (1.8)



