o

RARRRAAANAA

Machines, Languages,
and Computation

Peter J. Denning
Purdue University

Jack B. Dennis
Massachusetts Institute of Technology

Joseph E. Qualitz

Artisan Industries, Inc.

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Preface

Theoretical computer science has evolved from three disciplines: mathe-
matics, engineering, and linguistics. The mathematical roots of computer
science date from the 1930s when Turing’s work exposed fundamental limits
on mechanical computation. This work, an outgrowth of mathematical
logic, predates stored computers by more than a decade. Turing’s discovery
was reinforced by the work of Church, Kleene, and Post on recursive func-
tions and the formalization of mathematical logic. The origins in engineering
began with Shannon’s observation, in 1938, that the functions of relay
switching networks could be represented in the symbolic notation of Boolean
algebra. In the mid-1950s, Caldwell and Huffman extended this work to ob-
tain a formal approach to sequential switching circuits, which evolved into
the theory of finite-state machines. The linguistic contribution to computer
science came in the late 1950s with Chomsky’s characterization of formal
grammars and languages. Interest in formal specification of programming
languages led many computer scientists to study Chomsky’s work and build
it into an important theory of artificially constructed languages.

This book explores these three underlying themes of the theory of com-
putation, and is intended for computer science undergraduates at the senior
level—especially those planning to pursue graduate study. Several selections
of material may be chosen for a one-semester course, according to the
emphasis desired by the instructor. Alternatively, the book may be used for a
comprehensive two-semester course at a less intensive pace, or for sopho-
mores or juniors with a good mathematics background. (Suggested chapter
selections are discussed on page xiii, under Advice for Instructors.)

X Preface

Study of the theory of computation is an essential component of any
computer science curriculum. For its further evolution, modern computer
science depends on new methodologies for the construction of computers,
systems, languages, and application programs so that we may be confident
in their ability to perform as intended by their designers. The need for ac-
curate descriptions of computers, languages, and programs, and for precise
characterization of their behavior, has spurred the development of theore-
tical science. This includes work on the formal specification of programs,
languages, and systems, and on methods of proving their correctness; on
semantic formalisms that provide a sound foundation in mathematics for
basing theories of program and system behavior; and on computational
complexity—the study of the structure and space/time requirements of
algorithms. Since entire books are devoted to these areas,’ we devote the
present volume to the fundamental knowledge—abstract machines and lan-
guages, and computability—essential to understanding and contributing to
these developing areas of computer science.

This book had its genesis in an MIT course taught continuously since
1965, and has seen many years of evolution and refinement. It differs from
major related textst in several ways. First, we have emphasized the integrated
development of the main results in each of the three major conceptual threads
(machines, languages, computability), showing the relations and equivalences
among them. Second, we appeal to the student’s knowledge of program-
ming by using program-like descriptions of control units and algorithms.
Third, we have tried to develop the material in a way that has intuitive appeal.
Though our arguments are rigorous, every concept is carefully developed
and well illustrated through examples.

Content

Figure 1.4 shows the hierarchy of machines and languages studied in
this book, and the chapters in which each topic is treated. The following
paragraphs summarize the contents of each chapter.

Chapter 1 introduces abstract machines, and presents abstract languages
as sets of strings over finite alphabets. Chapter 2 briefly reviews elements of
set theory and logic, which provide concepts and notation relied on through-
out the book; it also introduces terminology for strings of symbols and the
important operations on strings and languages.

In Chapter 3, we begin the formal study of languages with the concept of

tAho, Hopcroft, Ullman [1974]; Borodin & Munro [1975]; Braffort & Hirschberg
[1967]; Stoy [1977]; Yeh [1977].

TArbib [1969;] Hennie [1968]; Hermes [1965]; Hopcroft & Ullman [1969]; Kain [1972];
Minsky [1967]; Stoll [1963].

Preface Xi

representing an infinite set of sentences by a finite set of grammatical rules
that generate the sentences of the language. The structural description of
languages is illustrated by examples from English and the programming
language Algol. Chomsky’s hierarchy of grammars (and corresponding
languages) is defined. Syntax trees are defined for context-free languages, and
derivation diagrams for the more expressive language classes. Ambiguous
derivations are defined.

Chapter 4 begins the study of abstract machines with a physically-moti-
vated discussion of the finite automaton, a machine built from a finite num-
ber of elementary parts. The concept of “state” is introduced to formalize the
description of a machine’s internal configuration. Two common methods of
assigning machine outputs (to transitions or to states of the machine) are
shown to be equivalent. Equivalent machines and states are studied, and a
procedure for reducing a finite-state machine to minimal canonical form is
developed. The chapter treats briefly the characterization of a machine by
equivalence classes of input sequences, grouped according to the states in
which they leave the machine.

Chapter 5 combines concepts from Chapters 3 and 4 in the study of
finite-state languages—sets of strings recognizable by finite state machines.
Nondeterministic machines are introduced and are shown to be reducible to
deterministic machines (usually at the cost of greater machine complexity).
Methods of converting between Chomsky’s linear grammars and nondeter-
ministic machines are given. Kleene’s regular expressions are introduced,
and methods of transforming between regular expressions and finite-state
machines are developed. The chapter ends by discussing closure properties,
ambiguity, and decision problems for finite-state languages.

Chapter 6 studies the limitations of finite-state machines. It exhibits
languages for which there exist no finite-state accepters. It characterizes the
limitations of finite-state accepters, generators, and transducers. It charac-
terizes the ultimately periodic behavior of finite-state machines, and proves,
based on this behavior, that certain arithmetic operations (for example, mul-
tiplication) are beyond the capabilities of finite automata.

Chapter 7 introduces tape automata. In a first attempt to define a class of
automata more powerful than the finite-state machines, we study tape auto-
mata with read-only input and no external writeable stores. It is shown that,
even with two-way motion on their input tapes, these automata have no more
computing power than finite-state machines; we conclude that additional
storage is required to increase their computational power.

Chapter 8 studies pushdown automata, a class of tape automata having
a restricted, but unbounded, external store: items can be retrieved from the
store only in reverse order of entry. The unbounded store endows these
machines with more power than finite automata—for example, they can
recognize languages that are not finite state—but we show that the restriction

xii Preface

on their store access method limits the ultimate power of these machines also.
Using a concept of traverse sets—sets of input strings that lead a machine to
the same control state and store configuration—we show how to transform
between context-free languages and nondeterministic pushdown accepters.
This equivalence is exploited to develop the closure properties of the context-
free languages. We discover languages which cannot be recognized by any
pushdown machine; we also discover languages which can be recognized by
pushdown automata only if nondeterministic behavior is permitted. (That
the deterministic languages are a proper subset of all context-free languages
implies that, in practice, syntax analyzers for some context-free languages
require backtracking, and thus may be slow; this implication is studied in
Chapter 10.) Finally, we consider the effect of limiting the number of dis-
tinct symbols in an automaton’s tape alphabet. Two symbols are shown to
be sufficient for general behavior, a single symbol is shown to define a class of
counting automata intermediate in power between the finite-state machines
and the pushdown automata.

Chapter 9 presents properties of context-free languages which derive
readily from a study of their grammars. After showing how to eliminate
needless productions from a grammar, we prove that these grammars can be
reduced to either of two canonical forms: the Chomsky normal form and the
Greibach standard form. These forms are frequently useful for simplifying
proofs and, sometimes, syntax analyzers for context-free languages. Two
important characterizations of context-free languages are proved: the pump-
ing lemma shows that, when a sufficiently long string is in a context-free
language, an infinity of related strings must also be there; the self-embedding
theorem characterizes the possible substring matchings in context-free lan-
guages. These theorems are used to prove that certain languages are not
context free.

Chapter 10 deals with syntax analysis of context-free languages. Most
modern compilers use parsing techniques based on context-free languages;
this chapter develops the most important methods. Top-down and bottom-
up analyses are defined and compared. Two forms of deterministic bottom-up
analysis are studied: (simple mixed strategy) precedence analysis, and LR(k)
analysis. In each case, we show how to construct an appropriate parser and
show that the corresponding grammars generate all deterministic context-
free languages.

In Chapter 11 we study Turing machines, the simplest models of general
mechanical computation. A variety of possible Turing machines are shown
equivalent to a simple form of Turing machine which has unrestricted access
to a single, singly-infinite storage tape. (The linear-bounded automaton, a
machine similar to the Turing machine but with a storage tape whose length
is bounded linearly by the length of its input, is discussed briefly.) A variety
of Turing machine programs for simple operations are developed, and are

Preface xiii

used as procedures in a universal machine capable of simulating any other
Turing machine. We state and explain Turing’s thesis: the solution pro-
cedure for any problem that can be solved effectively can be programmed
on a Turing machine. The universal machine partly supports this claim. Addi-
tional support is provided by the equivalence of Turing machines to two
other, seemingly unrelated, models of effective computation: recursive func-
tions and Post string manipulation systems. These equivalences are demon-
strated in Chapters 13 and 14. Finally, we define the concepts of enumeration,
recursive sets, and recursively enumerable sets.

Chapter 12 deals with unsolvable problems, well-defined classes of prob-
lems for which, by Turing’s thesis, there exist no effective solution proce-
dures. These include program-termination problems, word problems, and a
variety of decision problems concerning context-free languages. The exist-
ence of mechanically unsolvable problems is one of the most fundamental
results of the theory of computation.

In Chapter 13 we study recursive functions, a class of number-theoretic
functions used to model computation. We study three classes of recursive
functions: the primitive recursive functions, the u-recursive functions, and
the multiple-recurisve functions. The latter two classes are shown to be
equivalent, and each is shown equivalent to the Turing machines. Specifically,
we show how to construct a Turing machine that evaluates a given multiple-
recursive function; we show how to construct a u-recursive function that
simulates a given Turing machine; and we show that the class of multiple-
recursive functions contains the class of u-recursive functions.

Chapter 14 deals with Post string manipulation systems, a third model of
computation. Post systems are a formalization of the processes by which
humans solve problems symbolically, as in mathematical logic. We show how
to represent a few common algorithms with these systems, and then show how
any Turing machine may be encoded as a Post system and vice versa—thus
demonstrating the equivalence between Turing machines and Post systems,
and completing our study of the evidence supporting Turing’s thesis.

Advice for Instructors

Covering the entire content of this book in a one-semester course is pos-
sible for students with a strong background in basic set theory and logic, and
experience in proving theorems; however, a fast pace is necessary. Many
teachers will likely prefer either to cover the material in two semesters or to
teach a one-semester course emphasizing some portion of the material.

Chapter 2 reviews the essential mathematical background and introduces
the operations on strings used extensively throughout this book; all but
Section 2.7 may be skipped for students with prior study in set theory and

xiv Preface

logic. Other parts of the book that are of secondary importance and may be
skipped without loss of continuity include Sections 6.4, 6.5, 7.3, 8.6.2, and
8.7. Chapter 9 develops properties of context-free languages and grammars
useful for the study of parsing methods in Chapter 10. (The theorems in Sec-
tion 9.3, although useful for establishing the level of a language in the Chom-
sky hierarchy, are not used later in the book.) Chapter 10 itself may be
omitted if a treatment of parsing algorithms is not desired.

Sections 13.5, 13.6, and 14.2 contain the detailed developments that
establish simulation results in support of Church’s thesis. They are included
for completeness, and may be treated briefly if time is short.

For a one-semester course on language concepts (in preparation, for
example, for the study of program language implementation), Chapters 3, 5,
and 8 through 10 should be emphasized. For a one-semester course based on
Church’s thesis, Chapters 11 through 14 should be covered in depth, using
selected material from Chapters 3 through 8 as background.

Problems and References

Each chapter ends with a selection of Problems. Many of these are
designed as exercises to give the student confidence in his understanding of
the material and practice in applying procedures developed in the chapter.
Otbhers call for the proof of results not proved in the text, or extend, in some
way, material developed in the text. These often call for some creativity on
the part of the student, and are marked in boldface. Problems marked with an
asterisk are more difficult and are included to challenge the student.

A bibliography of books and papers cited in the text appears on pages
584-592. At the end of each chapter, we include remarks on the origin and
historical development of the major concepts treated in the chapter. Similar
remarks are included in some of the Problems.

Acknowledgements

We are grateful to Marsha Baker and Anne Rubin, whose typing of
(countably) many versions of the manuscript nurtured it from a small set of
lecture notes in 1967 to a manuscript four times larger in 1977.

We are indebted to our course instructors over the years who, in their
quest for perfection, reproved us for every blemish and error thay could
find; on their account, we have reproved many theorems. These people are:
John DeTreville, Kennith Dritz, Peter Elias, Irene Greif, D. Austin Hen-
derson, Carl Hewitt, Suhas Patil, and Richard Spann.

Seven senior computer scientists were especially influential in guiding us
to the important concepts and showing us, all too frequently, simpler ways of

Preface Xv

doing things. They are: Manuel Blum, Frederick Hennie, Richard Kain,
David Kuck, David Martin, Robert McNaughton, and Albert Meyer. Of
these seven, two deserve special note. Professor David Kuck, now of the
University of Illinois, shared with Jack Dennis the responsibility for this
course when it was instituted in 1965; his influence on the structure of the
course and the book was considerable. Professor Robert McNaughton, now
of Rensselaer Polytechnic Institute, was a walking encyclopedia of automata
theory and formal linguistics; he generously gave of his time and knowledge
during the formative stages of this work, and led us to an early appreciation
of the research in formal linguistics at Harvard and MIT.

We cannot omit our admiration for Karl Karlstrom, our humble and
faithful servant as Senior Editor at Prentice-Hall. His interest in our work
began in 1967, when Denning and Dennis agreed to deliver a manuscript the
following year. Qualitz, who had instructed the course at MIT several times,
rescued the project from oblivion by completing the manuscript and making
needed revisions to the work which had languished as the other authors took
up other interests. Karl, whose patience and encouragement did not sag for
a decade, tells his friends that he knew all along: his secretary meant to type
“78”, not “68”, in the delivery date. Thanks, Karl, for your confidence and
support.

PETER J. DENNING
JAack B. DENNIS
JosepH E. QuALITZ

About the Authors

Peter J. Denning is Professor of Computer Science at Purdue University
where his primary research interests are modeling and analysis of computer
performance, design of operating systems, memory management and program
behavior, data security and protection, secure data communication, fault toler-
ant software, and parallel computation. His work has led to many publications
including the book Operating Systems Theory with E. G. Coffman, Jr. He has
served the Association for Computing Machinery (ACM) in many official
positions, and is very active in editorial work, including serving as Editor-in-
Chief of ACM’s Computing Surveys. Peter Denning was born in New York
City, and grew up in Darien, Connecticut. He received the Ph.D degree Jfrom
MIT in 1968, and joined the Purdue faculty after spending four years as
Assistant Professor of Electrical Engineering at Princeton University. He has
received two best paper awards, and a teaching award from Princeton. He
is an inveterate jogger and wine connoisseur.

Jack B. Dennis is Professor of Computer Science and Engineering at
MIT where he leads a research group in work on advanced concepts of com-
puter system architecture in the MIT Laboratory for Computer Science. Jack
Dennis earned his doctorate from MIT in 1958 for work relating mathematical
programming and the theory of electric circuits. Since then he has been involved
in developing new course offerings in basic computer science at MIT, in working
with a number of successful doctoral research students, and in organizing pro-
Jessional conferences. He was elected Fellow of the Institute of Electrical and
Electronic Engineers for his contributions to the design of computer memory
systems. He is a New Jersey native and received his early education in Darien,
Connecticut. He now resides in Belmont, Massachusetts and enjoys temnis,
hiking, and singing with choral groups.

Joseph E. Qualitz is a native of Waltham, Massachusetts. He received
an SB and SM in Electrical Engineering from MIT in 1972, and a Ph.D in
Computer Science in 1975. He served as Instructor in the MIT Department of
Electrical Engineering from 1972 to 1975, and in 1973 received a teaching
award as outstanding instructor. Dr. Qualitz is currently Chief Computer
Engineer of Artisan Industries, Inc., of Waltham, Mass., where he is engaged
in the design and implementation of microcomputer development and support
Systems.

Xvi

Table of Major Theorems

Chapter 4: Finite-State Machines

Theorem 4.1: For each state-assigned machine there exists a similar transition-
assigned machine. Conversely, for each transition-assigned machine there exists
a similar state-assigned machine.

Theorem 4.4: There is an effective procedure for partitioning the states of a
finite-state machine into blocks of equivalent states.

Theorem 4.5: The state graphs of reduced, connected finite-state machines are
isomorphic if and only if the machines are equivalent.

Chapter 5: Finite-State Languages

Theorem 5.1: For each finite-state accepter M, one can construct a deterministic
finite-state accepter My such that L(M;) = L(M,).

Theorem 5.2: For any finite-state accepter M, one can construct a right-linear
grammer G such that L(G) = L(M).

Theorem 5.3: For any right-linear grammar G, one can construct a finite-state
accepter M such that L(M) = L(G).

Theorem 5.5: Each finite-state accepter recognizes a language that can be
described by some regular expression.

Xvii

XViii

Table of Major Theorems

Theorem 5.6: For any regular expression &, one can construct a finite-state
accepter M such that L(M) = R, where R is the set described by «.

Theorem 5.7: The class of finite-state languages is closed under the operations of
set union, intersection, complementation, difference, concatenation, closure, and
reversal.

Theorem 5.8: There is a finite procedure for deciding whether an arbitrary right-
linear grammar is ambiguous, and, if so, for finding an ambiguous sentence gen-
erated by the grammar.

Theorem 5.9: For any regular grammar G, it is possible to construct an unam-
biguous grammar G’ such that L(G’) = L(G).

Theorem 5.10: Let L; and L, be arbitrary finite-state languages, and let G be
an arbitrary regular grammar. Then it is decidable whether

1. Ly = L,.

2. L[= Q

3. L, is finite; L; is infinite.
4. LiNnL,=¢.

5. L Lz.

6. G is ambiguous.

Chapter 6: Limitations of Finite Automata

Theorem 6.1 (Finite-State Language Theorem): Let L be a regular set, and suppose
that there is an integer p > 0 such that

X = {a1(e2)*as(oa)*as |k = p}

is contained in L, where a1, . . ., a5 are strings with &, and a4 nonempty. Then
there exist strings f1, ..., fs such that

Y = B1(B2)*B3(Ba)*Bs

is a subset of L, and
B € w103
B2 eal—A
B3 € aazal
Pa ot —A
Bs € afas

Theorem 6.2: A language is regular if and only if it is generated by some (non-
deterministic) finite-state generator.

Theorem 6.3: The transduction of a regular set by a finite-state transducer is a
regular set. That is, the class of regular sets on a given alphabet is closed under
finite-state transducer mappings.

Theorem 6.4: (1) Let M be an n-state deterministic finite-state generator. Then M
generates an ultimately periodic language L(M) = T U 7p*P, where |7| + |p|

Table of Major Theorems Xix

<< n. (2) Conversely, each ultimately periodic language L = T U 7p*P is gener-
ated by some deterministic finite-state generator with no more than |7p| states;
moreover, if 7 and p are respectively the basic transient and basic period of L,
then no deterministic generator for L has fewer than |7p| states.

Theorem 6.5: Let X = S* be an ultimately periodic language, and let M, be a
deterministic finite-state transducer with input alphabet S. Then the transduction
of X by M, is an ultimately periodic language Y. Furthermore, if T and p are the
basic transient and basic period of the input X, and &« and f are the basic transient
and basic period of the output Y, then

el <|t| + nlp|
where #, is the number of states in M,.

Chapter 7: Tape Automata

Theorem 7.1: The class of regular sets is closed under transduction by a gen-
eralized sequential machine.

Theorem 7.2: The class of regular sets is closed under inverse transduction by a
generalized sequential machine.

Theorem 7.3: From any deterministic two-way accepter M, one can construct a
finite-state accepter M’ such that L(M’) = L(M).

Chapter 8: Pushdown Automata

Theorem 8.1: For any context-free grammar G, one can construct a pushdown
accepter M such that L(M) = L(G). Moreover, the accepting move sequences
in M are in one-to-one correspondence with leftmost derivations in G.

Theorem 8.2: For any pushdown accepter M, one can construct a context-free
grammar G such that L(G) = L(M).

Theorem 8.4: The class of context-free languages is closed under the operations
union, concatenation, closure, reversal, transduction by a generalized sequential
machine, and intersection and difference with a regular set.

Theorem 8.5: The deterministic context-free languages are a proper subclass of
all context-free languages. In particular, the language L,s = {a*b™|m = k or
m = 2k, k = 1} is context free but not deterministic.

Theorem 8.6: The class of deterministic context-free languages is closed under the
operations complement, intersection with a regular set, and difference with a
regular set. It is not closed under the operations union, intersection, concatena-
tion, reversal, set closure, or (deterministic) transduction by a finite-state machine.

Theorem 8.7: Counting accepters are intermediate in power between finite-
state accepters and pushdown accepters. In particular, there is a counting accepter

XX

Table of Major Theorems

that recognizes the parenthesis language L,, but no counting accepter that
recognizes the double parenthesis language Ly,.

Theorem 8.8: The class of deterministic context-free languages is a proper
subclass of the unambiguous context-free languages.

Chapter 9: Context-Free Languages

Theorem 9.1 (Emptiness Test): For any context-free grammar G, one can decide
whether L(G, A) = & for any nonterminal symbol 4 in G. In particular, one can
decide whether the grammar generates any strings at all [that is, whether L(G)
=L(G, %) = Z.

Theorem 9.3 (Normal-Form Theorem): From any context-free grammar, one can
construct a strongly equivalent grammar in normal form.

Theorem 9.4 (Standard Form Theorem): From any context-free grammar, one
can construct a strongly equivalent grammar in standard form.

Theorem 9.5 (Structure Theorem): Let G = (N, T,P,X) be a well-formed
context-free grammar. For any 4 in N U {Z}, L(G, A) is infinite if and only if G
permits the following derivations for some nonterminal B:

1. A==>uBp, o, f € T*.
2. B——*—>¢Bw,¢y/ e T* —A.
3.B=*>a, ce T — A

Theorem 9.6: For any context-free grammar G, one can decide whether L(G)
is finite or infinite.

Theorem 9.7 (Pumping Lemma): If L is a context-free language, there exists a
positive integer p with the following properties: whenever o is in L and || > p,
there exist strings a, g, o, v, and B, with gy and ¢ nonempty and lpoy | <p,
such that @ = agoyp and agpkoy*p is in L for all k > 0.

Theorem 9.8: The class of context-free languages is properly contained in the
class of context-sensitive languages. In particular, Ly, = {anbren |n > 1} is con-
text sensitive but not context free.

Theorem 9.9 (Self-embedding Theorem): A context-free language is nonregular if
and only if every grammar generating the language is self-embedding.

Chapter 10: Syntax Analysis

Theorem 10.2: A context-free language is deterministic if and only if it is gener-
ated by a generalized precedence grammar.

Theorem 10.3: Given any context-free grammar G, one can determine, for any
k =0, whether G is an LR(k) grammar.

Table of Major Theorems XXi

Theorem 10.4: (1) Every deterministic context-free language is generated by
some LR(1) grammar. (2) Every LR(k) language is deterministic.

Chapter 11: Turing Machines

Theorem 11.1: The domain of the relation realized by any nondeterministic
Turing machine is a Turing-recognizable language.

Theorem 11.2: The class of Turing-recognizable languages properly includes the
class of context-free languages.

Theorem 11.3: One can construct a universal Turing machine U that realizes a

function

fui A* —> A*
such that for any Turing machine M with tape alphabet T and any string 0 € T¥,
we have

C(x) if M has a halted computation g =—> &
undefined otherwise

Fo(DM) # T(w) = {

where a¢ = (4, g1, #, w), and D(M), T(w), and C(«) are specific encodings of
M, w, and « in the finite alphabet A.

Theorem 11.4: A set X = N is Turing enumerable if and only if X is the domain
of a Turing computable function.

Theorem 11.5: A set X = N is Turing semidecidable if and only if it is Turing
enumerable.

Theorem 11.6: A set is Turing recognizable if and only if it is Turing enumerable.

Theorem 11.7: There exists a Turing computable function
W:NxN—N
such that for all z, x, y
Wz, x)=y
if and only if machine M; in an enumeration of Turing machines computes

f(x) =y

Chapter 12: Unsolvable Problems
Theorem 12.1: The halting problem for Turing machines is unsolvable.
Theorem 12.2: The busy-beaver function is noncomputable.
Theorem 12.3: The word problem for type O grammars is unsolvable.

Theorem 12.4: The correspondence problem is unsolvable.

Xxii Table of Major Theorems

Theorem 12.5: The problem of deciding, for arbitrary context-free languages L
and L’, whether L N L’ is empty (or infinite) is unsolvable.

Theorem 12.6: The problem of deciding, for an arbitrary context-free language
L, whether Le is empty (or infinite) is unsolvable.

Theorem 12.7: There is no effective procedure for deciding whether a given
context-free language is regular.

Theorem 12.8: There is no effective procedure for determining whether a given
context-free language is deterministic.

Theorem 12.9: There is no effective procedure for deciding, given any context-
free grammar G, whether G is ambiguous.

Theorem 12.10: The problem of deciding whether L(G) = L(G’) for arbitrary
context-free grammars G and G’ is unsolvable.

Chapter 13: Recursive Functions

Theorem 13.1: The u-recursive functions, the multiple-recursive functions, and
the Turing-computable functions are equivalent classes of functions.

Theorem 13.2: Let A = N and Ac = N — A. Then:
(1) A is recursive if and only if Ac¢ is recursive.
(2) A is recursive only if A is r.e.
(3) A is recursive just if both A and Ac are r.e.

Theorem 13.3: A set A is recursively enumerable if and only if A is the domain
of a Turing-computable function. Equivalently, A is recursively enumerable if
and only if A is the domain of a (partial) recursive function.

Theorem 13.4: The class of total recursive functions cannot be effectively
enumerated.

Theorem 13.5: No recursively enumerable class of recursive sets contains every
recursive set.

Chapter 14: Post Systems

Theorem 14.1: Post systems and Turing machines are equivalent representations
of effective computability. That is, the deductions of a given Post system can be
represented as the computations of some Turing machine, and the computations
of a given Turing machine can be represented as the deductions of some Post
system.

Contents

Preface ix
Table of Major Theorems xvii

1 Introduction 7

1.1 Information Machines 1

1.2 Abstract Machines and Algorithms 2

1.3 Abstract Languages 2

1.4 Accepters, Generators, and Transducers 3
1.5 Hierarchy of Abstract Machines and Languages

2 Logic, Set Theory, and Languages 7

2.1 Propositional Logic 7
2.1.1. Propositions 7
2.1.2 Predicates 10
2.1.3 Proofs 11

2.2 Set Theory 12
2.2.1 Basic Concepts 12
2.2.2 Inclusion 14

iii

ee

ch

5

o

=

g

(s

