Lecture Notes in

Mathematics

Edited by A. Dold and B. Eckmann

789

James E. Humphreys

Arithmetic Groups

Springer-Verlag
Berlin Heidelberg New York



Lecture Notes In
Mathematics

Edited by A. Dold and B. Eckmann

789

James E. Humphreys

Arithmetic Groups

Springer\erlag
Berlin Heidelberg New York 1980



Author

James E. Humphreys

Department of Mathematics & Statistics
GRC Tower

University of Massachusetts

Ambherst, MA 01003

USA

AMS Subiject Classifications (1980): 10D07, 20 G 25, 20 G 30, 20 G 35,
20HO05, 22E40

ISBN 3-540-09972-7 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-09972-7 Springer-Verlag New York Heidelberg Berlin

-Library of Congress Cataloging in Publication Data. Humphreys, James E. Arithmetic
groups. (Lecture notes in mathematics ; 789) Bibliography: p. Includes index. 1. Linear
algebraic groups. 2. Lie groups. |. Title. Il. Series: Lecture notes in mathematics (Berlin) ;
789. QA3.L.28. no. 789. [QA171]). 510s [5612'.2] 80-12922

This work is subject to copyright. All rights are reserved, whether the whole or
part of the material is concerned, specifically those of translation, reprinting,
re-use of illustrations, broadcasting, reproduction by photocopying machine or
similar means, and storage in data banks. Under § 54 of the German Copyright
Law where copies are made for other than private use, a fee is payable to the
publisher, the amount of the fee to be determined by agreement with the publisher.

© by Springer-Verlag Berlin Heidelberg 1980
Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2141/3140-543210



PREFACE

An arithmetic group is (approximately) a discrete subgroup of a
Lie group defined by arithmetic properties - for example, Z in R,
¢L(n,2) in GL(n,R), SL(n,2) in SL(n,R). Such groups arise in a wide
variety of contexts: modular functions, Fourier analysis, integral
equivalence of quadratic forms, locally symmetric spaces, etc. In
these notes I have attempted to develop in an elementary way several
of the underlying themes, illustrated by specific groups such as
those just mentioned. While no special knowledge of Lie groups or
algebraic groups is needed to appreciate these particular examples,
I have emphasized methods which carry over to a more general setting.
None of the theorems presented here is new. But by adopting an
elementary approach I hope to make the literature (notably Borel [5]
and Matsumoto [17) appear somewhat less formidable.

Chapters I - III formulate some familiar number theory in the
setting of locally compact abelian groups and discrete subgroups
(following Cassels [1], cf. Weil [27] and Goldstein [17]). Here the
relevant groups are the additive group and the multiplicative group,
taken over local and global fields - or over the ring of adeles of a
global field. One basic theme is the construction of a good funda-
mental domain for a discrete group inside a locally compact group,
e.g., Z in R, or the ring of integers 0K of a number field K inside
R™ (n the degree of K over Q), where a fundamental domain corresponds
to a parallelotope determined by an integral basis of K over Q. In
the framework of adeles or ideles such fundamental domains have nice
arithmetic interpretations. Another basic theme is strong approxi-
mation. These introductory chapters are not intended to be a first
course in number theory, so the proofs of a few well known theorems
are just sketched.

Chapters IV and V deal with general linear and special linear
groups, emphasizing "reduction theory" in the spirit of Borel [5].
Here one encounters approximations to fundamental domains (called
"Siegel sets") for GL(n,Z) in GL(n,R) and deduces, for example, the
finite presentability of GL(n,Z) or SL(n,Z). The BN-pair (Tits
system) and Iwasawa decomposition are used heavily here. There is
also a brief introduction to adelic and p-adic groups.

Finally, Chapter VI recounts (in the special case of SL(n,Z))
the approach of Matsumoto [17] to the Congruence Subgroup Problem,
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via central extensions and " Steinberg symbols". Here adeles and
strong approximation play a key role, along with the Bruhat decomposi-
tion already treated in IV. Matsumoto's group-theoretic arguments,
done in detail, lead ultimately to the deep arithmetic results of
Moore [17], which can only be summarized here. (It is only fair to
point out that SL(n,2) can be handled in a more self-contained way,
cf. Bass, Lazard, Serre [1], Mennicke [1], and unpublished lectures of
Steinberg. Special linear and symplectic groups over other rings of
integers can also be handled more directly, cf. Bass, Milnor, Serre
[17. My objective has been to indicate the most general setting in
which the Congruence Subgroup Problem has so far been investigated;

in this generality it has not been completely solved.)

The various chapters can be read almost independently, if the
reader is willing to follow up a few references. I have tried to make
the notation locally (if not always globally) consistent. Standard
symbols such as Z, @, R, € are used, along with R>O (resp.!R> O) for
the set of positive (resp. nonnegative) reals. If K is a field, K
denotes its multiplicative group.

Chapters I - V are a revision of notes published some years ago
by the Courant Institute. Chapter VI is based partly on a course I
gave at the University of Massachusetts; class notes written up by
the students were of great help to me. I am grateful to the National
Science Foundation for research support, and to Peg Bombardier for her
help in typing the manuscript.

J.E. Humphreys
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I. LOCALLY COMPACT GROUPS AND FIELDS

Here we shall review briefly the approach to local fields based
on the use of Haar measure, together with the construction of the
adele ring of a number field. For a full treatment of these matters,

the reader can consult Chapter I of Weil [2].

§1. Haar measure
For the standard results mentioned below, see Halmos [1, Chap-
ter XI] or Bourbaki [3, Chapter 7].

1.1 Existence and uniqueness

Let G be a locally compact topological group (each element of

G has a compact neighborhood, or equivalently, the identity element

e does). G acts on itself by left and right translations
AX P g —> xg
P i 8 gx-1

(here the inverse insures that we get a hanomorphism x —> 0, of G
into the group of homeomorphisms of the space G).

Define a left (resp. right) Haar measure p on G to be a non-

zero Borel measure invariant under all left (resp. right) translations.
This means, by definition, that u 1is nonzero, all Borel sets are
measurable, p(C) < «» for C compact, and u(AxM) = u(M) (resp.

u(po) = u(M)) for x e G, M c G measurable.

Remarks and examples.

(1) If u is a left Haar measure on G, y 1is a right Haar measure,
where 1(X) = u(X_l) for all measurable X 1. (Check!)
(2) If u 1is a left Haar measure on G, cC « R>0 , then cu is
. again such (so Haar measure, if it exists, cannot be absolutely

unique) .

(3) If G 1is abelian, left Haar measure = right Haar measure.



(4) G =R or C€ (additive group): Lebesgue measure is a Haar
measure.

(5) On finite products, the product measure is again a Haar measure
(for example, on R" or ™.

0 .
, dx/x 1is a Haar measure.

(6) On the multiplicative group R”
(Verify this by integrating functions of compact support.)
(7) G may have essentially distinct left and right Haar measures.

(See Halmos, p. 256, for the standard example.)

THEOREM. Let G be locally compact. Then G has a left (hence

also a right) Haar measure, and (up to a positive multiple) only one.

Haar proved the existence part for G having a countable basis
of open sets (1933). Later von Neumann proved uniqueness for compact

G. The general case was completed by Weil and von Neumann.

Exercise. G 1locally compact, p (left) Haar measure.
(a) G 1is discrete iff u({e}) > 0

(b) G 1is compact iff p(G) < =,

When G 1is compact, one frequently (but not always) normalizes u so

that u(G) = 1.

1.2 Module of an automorphism

The uniqueness part of Theorem 1.1 is more useful than may
appear at first. Let G be locally compact, with left Haar measure
B . Aut G denotes the group of automorphisms of G (as topological
group) .
If ¢ ¢ Aut G, and X < G with ¢(X) measurable, set
v(X) = p(¢(X)). Since ¢ preserves Borel sets and compact sets,
it is very easy to see that v 1is again a left Haar measure on G.

By uniqueness, v = (modG o)y , where mod. ¢ R>0 (and this num-

G
ber is independent of the original choice of u, again by unique-

ness). Call modG ¢ the (left) module of ¢



Example. Let ¢ = Int x : g+ xgx-1 (x € G). Here write

0

modG ¢ = AG(x), SO0 An: G- R is a function, called the module of

G. If AG = 1, <call G wunimodular (this means that left Haar

measure on G 1is also right Haar measure).

Exercises and examples.

(a) We could also have defined a right module of ¢.
Prove that this equals modG ¢.

(b) modG 0 -modGu)= modG(¢ow)

(c) An abelian group is unimodular.

(d) Any automorphism of a discrete or compact group has module 1,
so such groups are unimodular.

(e) Any semisimple or nilpotent Lie group is unimodular.

Besides the example ¢ = Int x, another sort of automorphism
and its module will arise in §2 when we discuss locally compact

fields.

1.3 Homogeneous spaces

THEOREM. Let G be locally compact, H a closed subgroup of

G. Then there exists a G-invariant nonzero Borel measure on the

homogeneous space G/H iff the function bgs restricted to H,

equals Bys in this case, such a measure is unique up to a positive

multiple.
When G 1is abelian, or G 1is semisimple and H discrete, etc.
the hypothesis will be fulfilled. It is cases like these that will

occupy us later.

§2. Local and global fields

Here and in subsequent sections we are following the approach of
Cassels [1] (cf. also Weil [2, Part I], Lang [1, Chapter VII], Gold-

stein [1, Part 1]).



2.1 Classification theorem

By global field we mean either a number field (finite extension of
Q) or a function field (finite extension of Fq(t), t transcenden-
tal).

By local field we mean the completion of a global field with
respect to an archimedean or discrete (always rank 1 for our pur-
poses) nonarchimedean valuation. Q has the completions R and Qp
(for primes p in Z) ; Fq(t) has completions (all nonarchimedean)
isomorphic to the field Fq((t)) of formal power series. To get all
local fields we just take all finite extensions of the fields just
named. (Finite separable extensions will actually suffice.) Some
authors do not regard R or € as local fields. Also, some authors
allow more general coefficients for function fields. However, our
definitions are the appropriate ones in the present context, as the

following well known theorem shows.

THEOREM. Let K be a (non-discrete) locally compact topological

field. Then K is a local field, in the above sense.

Outline of proof.

(1) If a ¢ K*, multiplication by a 1is obviously an automorphism
of the (additive) locally compact group K, so its module (see
1.2) is defined. We denote it modK(a) and set modK(O) =0
This function modK : K<+R>0 is our candidate for a valuation
on K.

(2) It must be seen that modK actually is a valuation (since square
of absolute value occurs for € , one must define '"valuation"

appropriately: cf. Cassels, §l). The multiplicative property

is obvious. To see whether modK is archimedean or not one

looks at the prime field (Q or F ) and studies the various
P

possibilities.



(3) Local compactness of K implies completeness in the metric

topology defined by mod in particular, K contains a copy

K;
of the appropriate completion of its prime field (R, Qp,

Fp((t)) ). Local compactness also forces K to be finite

dimensional over this subfield, which finishes the proof.

Exercise. It will be seen shortly that local fields are indeed

locally compact. Compute modK explicitly, e.g., for

R : usual absolute value

C : square of usual absolute value

—ordp(u)

Q (see Appendix).

p- P

This singles out for each local field a normalized valuation, which

we will always use.

Exercise. K a local field, modK as above, u = Haar measure
on K (additive group). Then 53%— u defines a Haar measure on
K

*

K*. (Cf. 1.1, example (6)).

2.2 Structure of local fields

Let KV be a local field, as defined above, with valuation

I

properties of K since the topological structure of R, € is

|V We assume the reader is familiar with the basic algebraic

sufficiently known, we require Vv to be nonarchimedean. So KV is

a completion of a number field or function field at a "finite place'";
for some facts about the former case (of main interest to us) see the
Appendix below.

0 = {a ek, | |a|v < 1} is called the ring of local integers,

and is a principal ideal domain (PID). It has a unique maximal ideal
P, = {a €K, | [a|v < 1} , which is generated by an element W  of the
underlying global field K with maximum value < 1. The residue
field kv = Ov/Pv is well known to be finite. (For Kv = Qp ,

these objects are Zp, o) Zp, t p; Fp .) In the following theorem



we list those topological properties of local fields which will be of

importance to us.

THEOREM. Let Kv be a local field, v nonarchimedean. Then

0 is an open (hence also closed) subgroup of the (additive) group

K

v’ Ov is the unique maximal compact subring of KV; and Kv is

a (non-discrete) locally compact field.

Proof sketch.

(1) The neighborhood lotlv <e (e >0) of O in KV always contains
a sufficiently large power of the ''prime" T, SO the topology
is non-discrete.

(2) Pv is obviously an open subgroup of KV; since kv is finite,
PV has finite index in Ov’ which is therefore a finite union
of open cosets.

(3) That OV is compact follows from the fact that it is closed,
along with the general principle (exercise): A subset of Kv
is relatively compact (i.e., has compact closure) iff it is
bounded relative to

1,

(4) Any subring of K containing an element o with |a|v > 1

(i.e., a mnot in OV) contains all powers of o and hence is
not bounded. In particular, OV is the unique maximal compact
subring of KV

so K

(5) O is a compact neighborhood of the identity in Kv’ v

s
is locally compact.

Since R and C€ are well known to be locally compact, we

obtain the converse of Theorem 2.1: All local fields are (non-

discrete) locally compact fields.

Appendix: Review of number fields and completions

(a) Besides the usual (archimedean) absolute value |a|_ = |a| , Q

o

has a p-adic valuation for each prime p: If o € Q , write



ord_(a)
a=p P E

where B,Y are integers relatively prime to p, and ordp(u) € 7

Define

d
R

(We could replace 1/p by anything strictly between 0 and 1,
without changing the metric topology, but Haar measure yields this
normalized choicé: see 2.1.)

It is obvious that:

Z = {a €Q | [a]p <1 for all primes p}

and

a ¢ Q" implies |of <1 for almost all p,

hence ](x|p = 1 for almost all p.

(b) Let KX be a number field, of degree n over Q. There are n
distinct embeddings of K into €, r of them real (with image in
R) and the remaining 2s 1imaginary, s pairs of complex conjugate
embeddings. (In the literature, the usual notation is Ty, T,

s T

rather than r1r,s.) Denote these 015+ 0L and 15 ?1, 5985 T s

S

respectively. Combining each o with ordinary absolute value
yields an archimedean valuation on KX, extending | [_ ; each pair

T Ti, combined with the square of ordinary absolute value on C,

i’
yields another such. The resulting r+s valuations exhaust the

extensions of to K, and may be called infinite valuations.

(.
On the other hand, each p-adic valuation | lp on @ extends
in at least one (and at most n) ways to K; the resulting finite
valuations | |v correspond precisely to the prime ideals dividing
(p) 1in the ring 0K of elements of K integral over Z, the ring

of integers of K.

These exhaust the archimedean and discrete nonarchimedean valua-



tions of K. It is well known that Op = N 0 (defined
v finite
below) = {a € K | |a|v <1 for all finite v}. Moreover, if
x e K* |0L|V < 1 for almost all v (hence |a|v = 1 for almost all
V).

(c) K (as above) has an integral basis over Q, i.e., a basis

{ml,...,mn} consisting of elements of OK’ such that

0 Zw, + ... + 2w . (0 is a free Z-module of rank n, as are

K- 1 : n K
all fractional ideals # 0 in K.) With notation as above, the

discriminant D of K 1is defined to be the square of

K
Oqwy "t oW Tqwptte Ty ?lwl se ?swl
det E :
91%n 77T 9pn T1%n" 7" Ts¥p TElwn Tt ?swn

This number is a (positive or negative) rational integer, nonzero
because K/Q is separable (cf. Cassels, Appendix B). (Exercise. The

sign of DK is (-1)5.)

(d) K as above. If v is infinite, and we complete K 1in the
metric topology of | |v’ we get Kv = R (v real) or C(v imaginary).
Moreover, | |v extends uniquely to K . Similarly, if v is

finite we get a completion KV (written Qp for K = Q, v = p-adic
valuation). Let O = ring of local integers = {a ¢ K | |a| < 1}
and P = unique maximal ideal of 0 = {a € Kvl |aV| < 1} . For

some T € OK such that is maximal < 1 (ﬂv is unique up

o ly

to units), P 0, . Moreover, k, =0 /P  is finite (= F_ if

=T
v VoV v q
q 1is the '"morm" of the prime in OK which defines v). If I is a
set of coset representatives for kv’ we can express a € K = uni-
quely as a Laurent series in powers of T with coefficients in I.

(Ov consists of the ordinary power series.)



§3, Adele ring of a global field

In the 1930's Chevalley invented ideles (see §7 below); the
additive version (adeles, or valuation vectors) is now widely used as
well. Essentially, adeles provide a formalism for studying simultane-
ously all completions K, (v finite or infinite) of a global field
K, cf. Robert [1]. Tate's thesis, for example, exploits the possi-
bilities of this formalism in the direction of Fourier analysis. In
this section we merely introduce the basic notions, following Cassels

[1, 813-14] (cf. also Tate [1, §3].)

3.1 Restricted topological products

Let XA (A e A) be a collection of topological spaces, with

open subsets YA defined for almost all A . Let X consist of all
elements (XA) € Xx satisfying: Xy € Y, for almost all A.
Ael
Topologize X by taking as basic open sets all products ZA 5
Ael
where Z is open in X and Z, =Y for almost all x . Call X

A A A A

(with this topology) the restricted topological product of the Xk

with respect to the Yy

If S ¢ A 1is finite, and includes all A for which Yx is not

defined, let

X(S)=—I—TX)\X-[_I—Y>\

A eS A€S

with the product topology. A moment's thought shows that X 1is the
union of the various open subsets X(S), and indeed the topology of
X 1is uniquely specified by the requirement that each X(S) (with

its product topology) be open in X. (X 1is the direct limit of the

X(S8).)

LEMMA. If Xx is locally compact, and YA is compact whenever

defined, then X 1is locally compact.




