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vistonaries, researchers, and implementors.



Preface

In 1829, Louis Braille, a young organist in a Paris church, blind since age 3, invented
the well-known code for the blind, still in common use today all over the world and
named after him. Braille himself modified his code in 1834, and there have been several
modifications since. However, the basic design of this code, where each character is
represented by a group of 3 x 2 dots, has remained intact. The dots are embossed on
thick paper and each can be raised or flat (i.e., present or absent). Each dot is therefore
equivalent to one bit of information. As a result, the Braille code (Figure 1) is a 6-bit
code and can therefore represent 64 symbols (the code of six flat dots indicates a blank
space).

Braille’s followers extended the capabilities of his code in several ways. One
portant extension is contractions. These are letters that, when they stand alone, mean
words. For example, the letter “b” standing alone (or with punctuation) means the
word “but,” the letter “e” standing alone means “every,” and “p”

p” means “people.”
Another extension is short-form words. These are combinations of two or more codes

that mean an entire word (short-form words may contain contractions). For example,
“ab” means “about,” “rcv’ means “receive,” and “(the)mvs” means “themselves.” (The

“the” in parentheses is a contraction, dots 2-3-4-6.) Figure 2 shows some examples of
these special codes.
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Figure 1: The 26 Braille letters
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Figure 2: Some contractions and short words in Braille
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The contractions, short words, and other extensions of the Braille code are exam-
ples of intuitive data compression. Those who developed the Braille code further and
modified it for various languages realized that certain words and letter combinations
are common and should be assigned special, short codes to facilitate rapid reading. The
idea that common data items should be assigned short codes is one of the principles of
the modern field of data compression.

A Brief History of Braille

Louis Braille was born on 4 January, 1809, at Coupvray, near Paris. An accident
at age 3 deprived him of his sight and he remained blind for the rest of his life. At age
10, he was sent to the Paris Blind School where he learned to read in a code of raised
dots. This code was originally developed by M. Charles Barbier and later adopted by
the military, which called it “night writing” and used it for soldiers to communicate
after dark. Night writing was based on a twelve-dot cell, two dots wide by six dots
high. Each dot or combination of dots within the cell stood for a letter or a phonetic
sound. The problem with the military code was that the human fingertip could not
feel all the dots with one touch.

Braille spent nine years developing and refining night writing, eventually ending
up with the system of raised dots that today bears his name. His crucial improvement
was to reduce the cell size from 6 x2 to 3x2 dots. This meant that a fingertip could
enclose the entire cell with one impression and advance fast from one cell to the next.

The Braille code was introduced to the United States in about 1860 and was
taught with some success at the St. Louis School for the Blind. In 1868, the British
and Foreign Blind Associations were founded. They introduced Braille into England
and promoted it by printing and disseminating books in Braille.

In North America, the Braille organization is Braille Authority of North America
(BANA), located at http://www.brailleauthority.org/index.html.

BANA’s purpose is to promote and to facilitate the uses, teaching, and production
of braille. It publishes rules and interprets and renders opinions pertaining to Braille
in all existing and future codes.

The predecessor of this volume, Data Compression: The Complete Reference, was
published in 1977, with a second edition published in late 2000. It was the immedi-
ate and enthusiastic readers’ response that encouraged me to write this slim volume.
Whereas the original book is large, attempting to cover both the principles of data
compression and the details of many specific methods, this book is less ambitious. It
aims to guide a lay reader through the field of compression by conveying the general
flavor of this field. It does so by presenting the main approaches to compression and
describing a few of the important algorithms. The book contains little mathematics,
has no exercises, and includes simple examples.

The Introduction explains why data can be compressed, presents simple examples,
and discusses the main technical terms of the field.

Chapter 1 discusses the statistical approach to data compression. This approach
is based on estimating the probabilities of the elementary symbols in the data to be
compressed and assigning them codes of varying sizes according to their probabilities.



Preface xi

The elementary symbols can be bits, ASCII codes, bytes, pixels, audio samples, or any-
thing else. The main concept treated in this chapter is variable-size (prefix) codes. The
methods described are Huffman coding, facsimile compression, and arithmetic coding.

The popular technique of dictionary compression is the topic of Chapter 2. A
dictionary-based compression method saves bits and pieces of the file being compressed
in a data structure called a dictionary. The dictionary is searched for each new fragment
of data to be compressed. If that fragment is found, a pointer to the dictionary is written
on the compressed file. The following compression methods are described in this chapter:
LZ77, LZSS, LZ78, and LZW.

Images are common in computer applications, and image compression is especially
important because an image can be large. Chapter 3 is devoted to image compression.
Most of the chapter discusses various approaches to this problem, such as run-length
encoding, context probability, pixel prediction, and image transforms. The only specific
methods described are JPEG and JPEG-LS.

Chapter 4 is devoted to the wavelet transform. This technique is becoming more
and more important in image, video, and audio compression. It is mathematically
demanding, and a simple, nonmathematical presentation of its principles presents a
challenge to both author and reader. The chapter starts with an intuitive technique
based on the calculation of averages and differences. It then relates this technique to
the Haar wavelet transform. The concept of filter banks is introduced next, followed
by the discrete wavelet transform. The only wavelet-based specific compression method
illustrated in this chapter is SPTHT.

A movie is, in some sense, a generalization of a single still picture. Movies are
quickly becoming popular in computer multimedia applications, a trend that has created
a demand for video compression. A movie file tends to be much bigger than a single
image, so efficient video compression is a practical necessity. Another factor in video
compression is the need for simple, fast decompression, so that a compressed video can
be decompressed in real time. Chapter 5 covers the principles of video compression.

The last chapter, Chapter 6, examines the topic of audio compression. Sound is
one of the “media” included in computer multimedia applications and is therefore very
popular with computer users. Sound has to be digitized before it can be stored and
used in a computer, and the resulting audio files tend to be large. The chapter presents
the basic operation of the MP3 audio compression method (actually, this is the audio
part of MPEG-1) and also includes a short introduction to sound, the properties of the
human auditory system, and audio sampling.

The book is intended for those interested in a basic understanding of the important
field of data compression but do not have the time or the technical background required
to follow the details of the many different compression algorithms. It is my hope that
the light use of mathematics will attract the lay reader and open up the “mysteries” of
data compression to the nonexpert.

The CD-ROM included with the book is readable by PC and Macintosh comput-
ers. For each platform, the CD contains popular compression programs (freeware and
shareware) and a catalog file listing the programs. In addition, there is one file with
verbatim listings of the various code fragments (in Mathematica and Matlab) found in
the book.
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Domain name BooksByDavidSalomon.com has been registered and will always point
to any future location of the book’s Web site. The author’s present email address is
david.salomon@csun.edu, but some readers may find it easier to use the redirection
address (anyname)@BooksByDavidSalomon.com.

Readers willing to put up with eight seconds of advertisement can be redirected
to the book’s web site from http://welcome.to/data.compression. Email sent to
data.compression@uelcome.to will also be redirected.

Those interested in data compression in general should consult the short sec-
tion titled “Joining the Data Compression Community” at the end of the book, as
well as the useful URLs http://www.internz.com/compression-pointers.html and
http://www.hn.is.uec.ac.jp/ arimura/compression_links.html.

Northridge, California David Salomon

Math is hard.
—DBarbie

Non mi legga chi non e matematico
(Let no one read me who is not a mathematician.)

—Leonardo da Vinci
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Most of this book was culled from the second edition of Date Compression: The Com-
plete Reference during winter 2001. As its predecessors, this book was designed by the
author and was typeset by him with the TEX typesetting system developed by D. Knuth.
The text and tables were done with Textures, a commercial TEX implementation for
the Macintosh. The diagrams were done with Adobe Illustrator, also on the Macintosh.
Diagrams that require calculations were done either with Mathematica or Matlab, but
even those were “polished” in Adobe Illustrator. The following points illustrate the
amount of work that went into the book:

= The book contains about 128,100 words, consisting of about 744,500 characters.
As is now so common with any technical text, much reference material, including some
Mathematica and Matlab codes, were obtained from the World Wide Web.

= The text is typeset mainly in font cmrl0, but about 30 other fonts were used.
s The raw index file contained about 1350 items.

s There are about 310 cross references in the book.

That which shrinks must first expand.
—Lao-Tzu, verse 36 of Tao Te Ching
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Thus a rigidly chronological series of letters would
present a patchwork of subjects, each of which would
be difficult to follow. The Table of Contents will show
in what way | have attempted to avoid this result.

—Charles Darwin, Life and Letters of Charles Darwin



Introduction

Those who use compression software are familiar with terms such as “zip,” “implode,”
“stuffit,” “diet,” and “squeeze.” These are names of programs or methods for compress-
ing data, names chosen to imply compression. However, such names do not reflect the
true nature of data compression. Compressing data is not done by stuffing or squeezing
it, but by removing any redundancy that’s present in the data. The concept of redun-
dancy is central to data compression. Data with redundancy can be compressed. Data
without any redundancy cannot be compressed, period.

We all know what information is. We intuitively understand it but we consider it a
qualitative concept. Information seems to be one of those entities that cannot be quan-
tified and dealt with rigorously. There is, however, a mathematical field called informa-
tion theory, where information is handled quantitatively. Among its other achievements,
information theory shows how to precisely define redundancy. Here, we try to under-
stand this concept intuitively by pointing out the redundancy in two common types of
computer data and trying to understand why redundant data is used in the first place.

The first type of data is text. Text is an important example of computer data.
Many computer applications, such as word processing and software compilation, are
nonnumeric; they deal with data whose elementary components are characters of text.
The computer can store and process only binary information (zeros and ones), so each
character of text must be assigned a binary code. Present-day computers use the ASCII
code (pronounced “ass-key,” short for “American Standard Code for Information In-
terchange”), although more and more computers use the new Unicode. ASCII is a
fixed-size code where each character is assigned an 8-bit code (the code itself occupies
seven of the eight bits, and the eighth bit is parity, designed to increase the reliability
of the code). A fixed-size code is a natural choice because it makes it easy for soft-
ware applications to handle characters of text. On the other hand, a fixed-size code is
inherently redundant.

In a file of random text, we expect each character to occur approximately the same
number of times. However, files used in practice are rarely random. They contain
meaningful text, and we know from experience that in typical English text certain
letters, such as “E,” “T,” and “A” are common, whereas other letters, such as “Z” and
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“Q,” are rare. This explains why the ASCII code is redundant and also points the way
to eliminating the redundancy. ASCII is redundant because it assigns to each character,
common or rare, the same number (eight) of bits. Removing the redundancy can be
done by assigning variable-size codes to the characters, with short codes assigned to
the common characters and long codes assigned to the rare ones. This is precisely how
Huffman coding (Section 1.4) works.

Imagine two text files A and B with the same text, where A uses ASCII codes and
B has variable-size codes. We expect B to be smaller than A and we say that A has
been compressed to B. It is obvious that the amount of compression depends on the
redundancy of the particular text and on the particular variable-size codes used in file
B. Text where certain characters are very common while others are very rare has much
redundancy and will compress well if the variable-size codes are properly assigned. In
such a file, the codes of the common characters should be very short, while those of the
rare characters can be long. The long codes would not degrade the compression because
they would rarely appear in B. Most of B would consist of the short codes. Random
text, on the other hand, does not benefit from replacing ASCII with variable-size codes,
because the compression achieved by the short codes is cancelled out by the long codes.
This is a special case of a general rule that says that random data cannot be compressed
because it has no redundancy.

The second type of common computer data is digital images. A digital image
is a rectangular array of colored dots, called pizels. Each pixel is represented in the
computer by its color code. (In the remainder of this section, the term “pixel” is used
for the pixel’s color code.) In order to simplify the software applications that handle
images, the pixels are all the same size. The size of a pixel depends on the number of
colors in the image, and this number is normally a power of 2. If there are 2¥ colors in
an image, then each pixel is a k-bit number.

There are two types of redundancy in a digital image. The first type is similar to
redundancy in text. In any particular image, certain colors may dominate, while others
may be infrequent. This redundancy can be removed by assigning variable-size codes to
the pixels, as is done with text. The other type of redundancy is much more important
and is the result of pizel correlation. As our eyes move along the image from pixel to
pixel, we find that in most cases, adjacent pixels have similar colors. Imagine an image
containing blue sky, white clouds, brown mountains, and green trees. As long as we
look at a mountain, adjacent pixels tend to be similar; all or almost all of them are
shades of brown. Similarly, adjacent pixels in the sky are shades of blue. It is only on
the horizon, where mountain meets sky, that adjacent pixels may have very different
colors. The individual pixels are therefore not completely independent, and we say that
neighboring pixels in an image tend to be correlated. This type of redundancy can be
exploited in many ways, as described in Chapter 3.

Regardless of the method used to compress an image, the effectiveness of the com-
pression depends on the amount of redundancy in the image. One extreme case is a
uniform image. Such an image has maximum redundancy because adjacent pixels are
identical. Obviously, such an image is not interesting and is rarely, if ever, used in
practice. However, it will compress very well under any image compression method.
The other extreme example is an image with uncorrelated pixels. All adjacent pixels
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in such an image are very different, so the image redundancy is zero. Such an image
will not compress, regardless of the compression method used. However, such an image
tends to look like a random jumble of dots and is therefore uninteresting. We rarely
need to keep and manipulate such an image, so we rarely need to compress it. Also, a
truly random image features small or zero correlation between pixels.

What with all the ARC war flames going around, and arguments about which program
is best, I decided to do something about it and write my OWN.

You've heard of crunching, jamming, squeezing, squashing, packing, crushing, implod-
ing, etc.. ..

Now there’s TRASHING.

TRASH compresses a file to the smallest size possible: 0 bytes! NOTHING compresses
a file better than TRASH! Date/time stamp are not affected, and since the file is zero
bytes long, it doesn’t even take up any space on your hard disk!

And TRASH is FAST! Files can be TRASHED in microseconds! In fact, it takes
longer to go through the various parameter screens than it does to trash the file!
This prerelease version of TRASH is yours to keep and evaluate. I would recommend
backing up any files you intend to TRASH first, though.. . .

The next version of TRASH will have graphics and take wildcards:

TRASH C:\PAYROLL\*.x*

...and will even work on entire drives:

TRASH D:

...or be first on your block to trash your system ON PURPOSE!

TRASH ALL

We're even hoping to come up with a way to RECOVER TRASHed files!

From FIDO News, 23 April 1990

The following simple argument illustrates the essence of the statement “Data com-
pression is achieved by reducing or removing redundancy in the data.” The argument
shows that most data files cannot be compressed, no matter what compression method
is used. This seems strange at first because we compress our data files all the time.
The point is that most files cannot be compressed because they are random or close
to random and therefore have no redundancy. The (relatively) few files that can be
compressed are the ones that we want to compress; they are the files we use all the
time. They have redundancy, are nonrandom and therefore useful and interesting.

Given two different files A and B that are compressed to files C' and D, respectively,
it is clear that C' and D must be different. If they were identical, there would be no
way to decompress them and get back file A or file B.

Suppose that a file of size n bits is given and we want to compress it efficiently.
Any compression method that can compress this file to, say, 10 bits would be welcome.
Even compressing it to 11 bits or 12 bits would be great. We therefore (somewhat
arbitrarily) assume that compressing such a file to half its size or better is considered
good compression. There are 2" n-bit files and they would have to be compressed into
2" different files of sizes less than or equal n/2. However, the total number of these files
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is
N:1—#2—0—4+~-~+2”/2:21+n/2;1%21+n/27

so only N of the 2" original files have a chance of being compressed efficiently. The
problem is that N is much smaller than 2". Here are two examples of the ratio between
these two numbers.

For n = 100 (files with just 100 bits), the total number of files is 21%° and the
number of files that can be compressed efficiently is 251. The ratio of these numbers is
the ridiculously small fraction 2749 ~ 1.78 - 10~15.

For n = 1000 (files with just 1000 bits, about 125 bytes), the total number of files
is 2199 and the number of files that can be compressed efficiently is 2501, The ratio of
these numbers is the incredibly small fraction 27490 ~ 9.82. 1091,

Most files of interest are at least some thousands of bytes long. For such files,
the percentage of files that can be efficiently compressed is so small that it cannot be
computed with floating-point numbers even on a supercomputer (the result is zero).

It is therefore clear that no compression method can hope to compress all files or
even a significant percentage of them. In order to compress a data file, the compression
algorithm has to examine the data, find redundancies in it, and try to remove them.
Since the redundancies in data depend on the type of data (text, images, sound, etc.),
any compression method has to be developed for a specific type of data and works best
on this type. There is no such thing as a universal, efficient data compression algorithm.

The rest of this introduction covers important technical terms used in the field of
data compression.

= The compressor or encoder is the program that compresses the raw data in the
input file and creates an output file with compressed (low-redundancy) data. The de-
compressor or decoder converts in the opposite direction. Notice that the term encoding
is very general and has wide meaning, but since we discuss only data compression, we
use the name encoder to mean data compressor. The term codec is sometimes used to
describe both the encoder and decoder. Similarly, the term companding is short for
“compressing/expanding.”

= A nonadaptive compression method is rigid and does not modify its operations,
its parameters, or its tables in response to the particular data being compressed. Such
a method is best used to compress data that is all of a single type. Examples are
the Group 3 and Group 4 methods for facsimile compression (Section 1.6). They are
specifically designed for facsimile compression and would do a poor job compressing
any other data. In contrast, an adaptive method examines the raw data and modifies
its operations and/or its parameters accordingly. An example is the adaptive Huffman
method of Section 1.5. Some compression methods use a two-pass algorithm, where the
first pass reads the input file to collect statistics on the data to be compressed, and
the second pass does the actual compressing using parameters or codes set by the first
pass. Such a method may be called semiadaptive. A data compression method can
also be locally adaptive, meaning it adapts itself to local conditions in the input file and
varies this adaptation as it moves from area to area in the input. An example is the
move-to-front method [Salomon 2000].



