N X
S5 Building

Kenneth Ingham

UNIX Tool
Building

Kenneth Ingham

Computer & Information Resources & Technology (CIRT)
University of New Mexico

Albuquerque, New Mexico

Academic Press, Inc.
Harcourt Brace Jovanovich, Publishers
San Diego New York Boston London

Sydney Tokyo Toronto

This book is printed on acid-free paper.

Copyright © 1991 by Academic Press, Inc.

All Rights Reserved.

No part of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photo-
copy, recording, or any information storage and retrieval system,
without permission in writing from the publisher.

The University of New Mexico holds the copyright on watcher.
watcher may be freely copied, as long as the following conditions
are met:
e watcher is not sold for profit
¢ The source code for watcher is made available along with the
executable
® The copyright and author notices remain intact

Contact either the University of New Mexico or the author (Kenneth
Ingham) if you wish to do more than this copyright allows.

Academic Press, Inc.
San Diego, California 92101

United Kingdom Edition published by
Academic Press Limited
24-28 Oval Road, London NW1 7DX

Library of Congress Cataloging-in-Publication Data

Ingham, Kenneth, date
Unix tool building / Kenneth Ingham.
p. cm.
Includes bibliographical references.
ISBN 0-12-370830-3 (alk. paper)
1. UNIX (Computer operating system) I Title.
QA76.76.063154 1990
005.4'3--dc20 90-527
CIP

Printed in the United States of America
90 91 92 93 9 8 7 6 5 4 3 2 1

UNIX Tool Building

To my parents

Preface

With UNIX becoming more widespread, more people are using it to
write large programs. However, much of the knowledge of how to use
the tools provided with UNIX to write new tools exists in people’s
heads, transferred from person to person or else learned through ex-
perimentation and many frustrating days poring over the manual and
wondering what the author really meant.

The goal of this book is to explain some of these tools in more de-
tail as well as to introduce the reader to some of the concepts of tool
building. Anyone can write programs. With a little forethought, these
programs could be more general and have uses beyond just solving the
one problem they were designed to solve. When thought is given to
debugging before a program is written, debugging aids can be built
into the program to reduce the debugging time.

Many small examples highlight specific ideas. However, as the
book progresses, a large program is built to illustrate the concepts pre-
sented, tying the use of tools together and providing a unifying ex-
ample. This example program makes UNIX Tool Building unique
among books discussing programming and UNIX.

The examples used in this book worked on Ultrix 3.1, a version of
TJNIX based on Berkeley 4.3BSD. Output from sample commands will
.ary between systems.

Many people helped me write this book. Most notable were Keith
Nislow who helped improve my writing skills and gave numerous
comments on the style. Pat Northup helped me become consistent in
my explanations, helped me aim the text at the audience I wished,
and gave many other helpful comments. Leslie Gorsline gave many
suggestions and in general has helped my writing style over the years.
Finally, Diana Northup has given me much needed support over the
trials of writing which I have endured. I extend my deepest apprecia-
tion to these and all of the other people who assisted me with this
endeavor.

xiii

Contents

PrEfage cimwss s s omanes s oomni i1 s uansss s bssmmnssssiaamua i s xiii
CHAPTER 1

Introduction 1

1.1 Theme i e e 1

1.2 Tools ... 1

1.3 Rationale for Using UNIX 3

1.4 ScopeoftheBook L. 5

1.4.1 Background Information 5

1.4.2 Additional Resources 6

1.5 Organizationof the Book 7

1.6 PortabilityIssues i 8

1.7 Conventions Used in This Book 8
CHAPTER 2

Overview of the Problem and Its Solution 11

2.1 Background of the Problem to Solve 11

2.2 Criteriafora Solution 12

2.3 Potential Solutions 13

24 TheSoluton s :cisaveusssonmnssancmmniarsivinnanss 14

2.5 Codingof watcher 19

2.6 Debugging 20

2.7 Portability [88I068 . . coswss s s cnmms s smmensszsosmpnes s 21

2.8 SUMMATYt 22
CHAPTER 3

Lexical Analysis i 23

3.1 Background 23

3.2 ‘watcher’s Lexical AnalysisNeeds 24

vii

3.3
3.4

3.5

3.6
3.7
3.8

viii / Contents

The Non-lex Lexical Analyzer for watcher 24
JER omas 5§ 60EmE5 5 5 LA ATEE T o v mma s 0w e o e o 27
3.4.1 RegularExpressions 27
lexInputFiles 31
3.5.1 The Declarations Section 31
3.5.2 TheRulesSection 34
3.5.3 Usinglex, 36
3054 Tomamd D . conemesrsommene s s samamasssesanns 36
3.5.5 The Subroutines Section 37
Using lexwithyacc a7
The lex Input File for watcher 39
SUMTMALY s smumoss s sammas 55 5 08T@5 555 S0HE55 555 o mommoe o 39

CHAPTER 4

Parsing the ControlFile 41
4.1 Background 41
4.2 The yacc GrammarFile 43
4.3 yaccRules 43
4.4 Pseudo-variables L 45
4.5 SupportRoutinesforyacc 43
4.6 A Small yaccExample 49
4.7 The yacc Grammar for watcher 53
4.8 SUMIMNATY ...ttt e 55

CHAPTER 5

Compiling and MaintainingtheCode 57
5.1 Introduction i 57
52 ImplicitRules ...::comvuevcommnusveismnnsitiisomnnss 59
5.3 makeMacroscoiiiiiiii 60

5.3.1 User-DefinedMacros 80

5.3.2 PredefinedMacros 62

5.4 make “Tricks” 64
5.4.1 Files Which Are Touched but Do Not Change ... 64

5.4.2 ChangingDirectories 65

- Dkl LOWIE 251 smmupess rammns e e smaEnNE Y 4§ AHERGG L § £ 65
5.5 Other make Targetsc..covoun... 65

Contents / ix

5.6 Configuration of Systems::..ssswessssmssnsssssns 66
5.7 SUMMATY ...\ttt i 67

CHAPTER 6

Writing and Debugging Revisited B9
6.1 Introduction, 69

6.2 Building a Structure with yacc 69

6.3 Use of the Structure Built by the Parser 74
6.4 General Debugging Hints 75
6.4.1 lint 75

6.4.2 Debuggers 76

6.4.3 PrintfStatements 78

6.8 DUBMERY oco:esennerssibaanis s simumns i s s iaBmans s é £4 78

CHAPTER 7

Writing Documentation 79
7.1 TheManualPage, 79
7.2 Standard Headings 79
7.3 Macros for Formatting Manual Pages 80
7.4 Formatting the Manual Pages 83
7.5 What Should Be Covered in a Manual Page 84
7.6 Additional Documentation 85
7.7 SUINIMATY . .ttt t ettt 85

CHAPTER 8

Useful Standard UNIX Tools 87
8.1 headand tail i 87
8.2 The grep Family ..xseu:coumsnoassinmnnsssssmuannisse 88
8.3 sortand UNIQcouniuinmiini e, 0
B4 WC ..o e g2
B.5 SBA ... a2
BB WK ... vmsnn o r v nns s § B ERE S REEEEN F P RAE R Y S 94

8.6.1 Patterns 94
8.6.2 ACHONS 96
863 FGIMDIEE . vumwesscmmamssrs smunms s e imenmng s e 97
8.7 SUMIMATY ...ttt ettt 103

x |/ Contents

CHAPTER 9

Programmingthe Shells 105
9.1 OVEIVIEBW ..ttt e e 105
9.2 Variables 108

9.2.1 Normal Variables 106
9.2.2 Predefined Variablesinsh 108
9.2.3 Predefined Variablesincsh 108
9.2.4 Environment Variables,...... 109
9.3 QUOHNEG s i smwmus s sumame s s immaess ¢ sammas s s ¢ smaayss 110
9.4 RedirectingInputwith<< 112
9.5 ControlFlow 114
9.5.1 if ... 114
9.5.2 caseorswitch 117
9.5.3 fororforeach 119
954 while 121
950 TePEA : i .cnusssssmmmoes s smmunms s s enmomes s ows 122
9.6 Debugging Shell Scripts 122
9.7 MoreExamples i 124
9.8 SUMIMATY ...ttt e 124

CHAPTER 10

Usingwatcher i 127
10.1 Customizinga Control File 127

APPENDIX A

Where to Find More Information 131
A.1 How to Find Things in the Manual 131
A.1.1 SectionsoftheManual 131

A.1.2 The SYNTAX in Section1 132

A.1.3 The SYNTAX in Sections2and3 133

A.2 Experimenting i, 134
A.3 Finding Others Who Have Done It 135
A.4 Other Books Which May Be Useful 136
A.5 Usenixand UniForum 137

AB USENETNEWSccumvurvrsenerssssosnmniscsnans 137

Contents / xi

APPENDIX B

Unformatted Manual Page for watcher 139

APPENDIX C

Formatted Manual Page for watcher 145

APPENDIX D

Paper on watcher Presented atUsenix 149

APPENDIX E

Codefor watcher i 157

CHAPTER 1

Introduction

1.1 Theme

The purpose of this book is to teach UNIX tool building by taking the
reader through all facets of the design and implementation of a large,
complete program. This book shows the reader the step-by-step devel-
opment of watcher, a complete UNIX tool whose function is detailed
later. By demonstrating new concepts in the context of this large pro-
gram, rather than introducing concepts via isolated examples, the
reader should get a clearer grasp of how these concepts relate to one
another. By using existing UNIX tools to develop watcher, the reader
gains a better understanding of these tools, as well as the insight that
this “modular” strategy reduces the amount of time spent coding and
debugging. This approach not only results in new useful tools, it also
reinforces the concepts involved in their construction.

1.2 Tools

Within this book, a tool is a program, subroutine, or shell script
which solves a general but well-defined problem. A tool differs from
an ordinary program, subroutine, or shell script in its generality. It
can often be reused in other contexts with little or no modification.

Consider the following example: You need to watch several com-
puters more or less simultaneously, with the goal of averting prob-
lems before they occur. One possible solution would be to connect
one terminal to each computer and move between the terminals con-
tinually, watching each system. Obviously, this arrangement wastes
both terminals and time. To save time you could automate the process
by creating a list of areas to watch and having each machine send you

2 / 1. Introduction

the status of each item via electronic mail. This solution is better,
since it requires only a terminal at which to read your mail. Unfortu-
nately, you are still doing most of the work.

An even better solution would be to write a program which can
take a list of commands to run, along with a definition of what is “nor-
mal” or “acceptable” output for these commands, and have the pro-
gram notify you only when something is wrong or “abnormal.” This
program can be used not only to watch an operating system, but any-
thing for which “normal” can be defined. This is an example of a tool.

As another example, suppose you have a large program split into
many files of code and you need to know from how many places
the subroutine printargs is called in this program. No tools exist on
UNIX specifically designed for this purpose; however, the tool egrep
searches files for a pattern. Another tool, wc, counts the lines, words,
and characters in its input. These two tools can be combined to pro-
duce the desired information by using a powerful concept known as a
pipe, where the output of one program serves as the input for another.
A pipe is analogous to an assembly line, where the workers receive
parts, perform their tasks with the parts, then send them down the
line to the next worker. In the example about finding the number of
times a subroutine is called, the following command line would pro-
duce the answer':

egrep 'printargs(.*);' *.c | we -1

With pipelines, there is little need for temporary files. On many
operating systems, a command is run with the output going to a file.
A second command is run with the file as its input. The pipeline is a
much cleaner and more elegant solution to the problem.

Many tools are written under the assumption that they will be
used as part of a pipeline. They read from the standard input, modify
or use the data in some way, then write it to the standard output. For
example, troff is good at formatting text, but the troff commands
needed to produce a table are low-level and difficult to use. The tool
tbl, on the other hand, recognizes certain constructions as tables and
produces the troff code necessary to produce a table. It changes only
the part of its input which pertains to tables, and the rest is passed
through unchanged.”

1. Don’t worry if this seems confusing—it will be covered in more detail in Chap-
ter 8.

2. Programs which change part of their input and pass the rest unchanged are often
known as filters.

1.3 Rationale for Using UNIX / 3

Programs designed to use and be used in pipelines tend to be more
general than those programs not designed with pipelines in mind;
that is, they can solve a wider range of problems than ones which
were not designed with pipelines in mind. For example, egrep can
search for patterns in one or more files or in data which comes from
the output of other programs. These other programs may be working
with devices (such as tar or cpio) or simply files. All of this variety of
input requires little special design effort; the program is designed to
read data from standard input, no matter what is actually generating
the data.

A tool does not need to be a program; a subroutine can also be a
tool. As with a program, a subroutine written as a tool should solve
a general problem. It can then be used in other parts of the program
or even in other programs with little or no modification, saving both
coding and debugging time.

When writing a subroutine to be a tool, it helps to keep the routine
short, making it easy to understand the whole purpose of the routine
and also easier to debug it. Understanding all of the pieces and how
they interact is key to understanding how the whole functions; short
routines greatly aid this process.

Shell scripts can also be tools. On UNIX, the standard shells are
programmable; programs written in the shell’s language are known as
shell scripts. These scripts can be used to solve problems by using
other programs or shell scripts. They need to meet the same criteria as
programs to be considered tools.

1.3 Rationale for Using UNIX

In the strictest sense of the word, UNIX refers to the kernel—the cen-
tral core of the operating system which controls the computer and di-
vides the resources among the users. However, in most cases, when
people refer to UNIX, they mean not only the kernel but also the tools
usually provided with UNIX—tools such as grep, awk, and the C
compiler. When “UNIX” is used in this book, this broader definition
is intended.

UNIX makes writing programs easier by providing many tools
which help in building new tools. Since it was written by program-
mers for programmers, it has one of the richest toolkits available. Here
is a brief introduction to some of these tools, as well as other general
terms used frequently in the UNIX environment. They will be covered
in more detail later in the book.

4 / 1. Introduction

awk A programming language which helps with data manipula-
tion by doing part of the work (such as breaking the input up into
fields) and allowing the programmer to easily express transformations
to the data. awk can also be useful for prototyping ideas quickly to
test their feasibility before doing a full implementation in a compiled
language. awk was named for its authors: Alfred Aho, Peter Wein-
berger, and Brian Kernighan.

lex Assists in building lexical analyzers (scanners) by taking a
description of how to break the input into logical units (known as
tokens) and generating C code for a routine which reads the input and
returns the tokens found. lex-generated scanners are usually easier to
modify than those written by hand.

yacc Takes up where lex leaves off; given a grammar describing
a language it generates C code for a parser for that language. Parsers
generally pose problems, but yacc makes them easy to write and
modify.

make Given a list of file dependencies, make rebuilds only the
files which are out of date (such as object files depending on source
files; if a source file is newer than its corresponding object file, make
will recompile it). make saves programmer and CPU time.

shells The “outer layer” of the operating system. The user inter-
acts with the operating system through a shell; the shell reads input
from the user and executes commands. On UNIX, several shells are
available. In addition to handling the redirecting of I/0 to files or
down pipelines, a shell is often also a programming language in its
own right.

mail On UNIX, mail has several user interfaces available, and
it can be used to communicate with people on the local machine,
within a site, or across the world through a network.

USENET A loose network of computer systems—most run-
ning UNIX—that exchange electronic news and mail. There are many
discussion groups ‘“on the net,” and information on a multitude of
technical and nontechnical topics can be found among them. The
technical groups are good places to learn more about UNIX (or any
other topic).

UNIX also provides support for the programmer from the operat-
ing system itself, via system calls and library functions. The system
calls provide access to the raw power of the operating system; the li-
brary functions make some of this power available without burden-
ing the programmer with too many details. The services provided by
these system calls and library functions range from doing I/O to keep-

1.4 Scope of the Book / 5

ing track of and communicating with other processes in the system (or
across a network).

With UNIX few decisions are already made for the programmer;
almost anything can be changed (although it might take a little work).
With this programmer’s freedom of choice comes the programmer’s re-
sponsibility to pass this flexibility on to the user. If the programmer
makes decisions for the user, this has the effect of limiting the appli-
cations for which the program is useful; the resultant program might
prove inadequate for applications unforeseen when the program was
written. In this case, the program would have to be modified, or else a
new program must be written to handle the new situation. The most
useful tools are those which make the fewest a priori assumptions.

UNIX is available for more types of computers than any other
operating system. It runs on everything from personal computers
through the Cray supercomputers. Programs written for UNIX can usu-
ally be moved easily between machines made by different vendors.

There is much public-domain or inexpensive (often free) copy-
righted software available for UNIX. This is due in part to UNIX’s long
history of use at universities where software is often given away after
it is written. This software usually comes complete with source code,
allowing the user to learn and make modifications (or fix bugs). This
book follows the tradition by providing source which may be freely
copied without royalties (see the copyright page for full information
about the copyright on watcher).

1.4 Scope of the Book

Throughout this book it will be assumed that the reader is familiar
enough with UNIX to know how to use one of the editors provided.
Also necessary is at least an acquaintance with the C programming
language and knowledge of how to use the C compiler provided with
the system.

1.4.17 Background Information

On UNIX, there is the concept of standard I/O. When a shell starts any
program, it has associated with it three I/O streams: input, output,
and error. (These are commonly referred to as stdin, stdout, and
stderr, pronounced ‘“standard in,” ‘“standard out,” and ‘“standard
error.”) When a program reads without specifically referring to a file,
it reads from the standard input. Similarly, when it writes without a
reference to a specific file, it writes to the standard output. By default,

6 / 1. Introduction

all three streams are connected to the controlling terminal (the termi-
nal which initiated the process). With the shell, the input or output
may be redirected to or from files (via > or <) or through a pipeline.
The standard error is normally still attached to the controlling termi-
nal even if the standard output is redirected; this allows error mes-
sages to be seen immediately, instead of disappearing down a pipe-
line or into a file.

As mentioned earlier, the shells on UNIX are programmable. A
program written in a shell is usually called a shell script. Writing
shell scripts is covered in Chapter 9.

1.4.2 Additional Resources

Since no one book can cover everything, the reader is directed to sev-
eral books which provide information complementing the informa-
tion this book presents. In Section A.4 of Appendix A is a bibliogra-
phy listing these and all other books referenced throughout this book.

» Marc Rochkind’s Advanced UNIX Programming goes into detail
about the system calls and the concepts needed to understand
them and also gives several small examples of how to use them.

* The UNIX Programming Environment by Brian Kernighan and
Rob Pike is a good (but somewhat dated) introduction to using
many of the tools that UNIX has to offer. It stresses the use of
tools to solve problems whenever possible.

« The classic book on programming in C is The C Programming
Language by Brian Kernighan and Dennis Ritchie, the develop-
ers of the language. It is the best reference book available for the
language. Recently, a new edition was released which describes
the ANSI standard for the C language. From here on (and else-
where in the UNIX community), this book will be referred to
as K&R.

* For more information about writing tools, Software Tools or its
close relative Software Tools in Pascal, both by Brian Kernighan
and P. J. Plauger, are unmatched.

The reader might also find some of the software available from the
Free Software Foundation useful. Dedicated to the philosophy that
source code should be available to all, the Foundation’s products all
come with source code and may be obtained directly from the Foun-
dation or from anyone who has a copy. The products available are
well written. Support is minimal, but since the source is provided,
problems can be tracked by investigating the source.

