ELLIS HORWOOD - PUBLISHERS

an introduction to

STATISTICAL
PHYSICS
!! W.G.V. Rosser




AN INTRODUCTION TO
STATISTICAL PHYSICS

W. G. V. ROSSER, M.Sc., Ph.D., F.Inst.P
Reader in Electromagnetism

Department of Physics

University of Exeter

m

S HORWOOD LIMITED
Publishers - Chichester
Halsted Press: a division of
JOHN WILEY & SONS

New York - Chichester - Brisbane - Toronto



First published in 1982 by

ELLIS HORWOOD LIMITED
Market Cross House, Cooper Street, Chichester, West Sussex, PO19 1EB, England

The publisher’s colophon is reproduced from James Gillison’s drawing of the
ancient Market Cross, Chichester.

Distributors:

Australia, New Zealand, South-east Asia:
Jacaranda-Wiley Ltd., Jacaranda Press,

JOHN WILEY & SONS INC.,

G.P.O. Box 859, Brisbane, Queensland 40001, Australia

Canada:
JOHN WILEY & SONS CANADA LIMITED
22 Worcester Road, Rexdale, Ontario, Canada.

Europe, Africa:
JOHN WILEY & SONS LIMITED
Baffins Lane, Chichester, West Sussex, England.

North and South America and the rest of the world:
Halsted Press: a division of

JOHN WILEY & SONS

605 Third Avenue, New York, N.Y. 10016, U.S.A.

© 1982 W. G. V. Rosser/Ellis Horwood Ltd.

British Library Cataloguing in Publication Data

Rosser, W. G. V.

An introduction to statistical physics. — =~ ,

(Ellis Horwood series in phydics in medicine and biology)
1. Statistical mechanics A

I Title ¢

530.1’3 QC174.8

Library of Congress Card No, 81-4139 AACR2

ISBN 0-85312-—272-5_(E11‘H' pvoad Btd.; Publishers — Library Edn.)
ISBN 0-85312-357-8 (Ellit Hotwood Ltd., Publishers — Student Edn.)
ISBN 0-470-27241-4 (Halsted Press — Library Edn.)
ISBN 0-470-27242-2 (Halsted Press — Student Edn.)

Typeset in Great Britain by Preface, Salisbury.
Printed in the USA by The Maple-Vail Book Manufacturing Group, New York.

COPYRIGHT NOTICE —

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the permission of Ellis Horwood Limited, Market Cross
House, Cooper Street, Chichester, West Sussex, England.



Author’s Preface

This book is based on a course given by the author to Honours Physics
and Combined Honours students in their second year course at Exeter
University. Nowadays, solid state physics and related topics form an impor-
tant part of the third year honours course at British Universities. This
means that students should preferably do an introductory course on statis-
tical physics in their second year. At this stage the students are already
familiar with Newtonian mechanics, and may have done a course on classi-
cal equilibrium thermodynamics, but they will probably only just have
started their first comprehensive course on quantum mechanics. Clearly
with this restricted background, in the initial stages, a second year course
on statistical physics requires a far more simplified approach than can be
adopted in a third year course. The author has tried to write the book at the
level the average second year student can understand. To achieve this, the
first presentation of new material is by means of simple numerical ex-
amples. All the mathematical steps are given in full. The basic principles
of statistical physics are illustrated by simple numerical examples in Chapter
2. The reader can always return to these numerical examples, if he has any
difficulties with the basic formulae used in later chapters. From Chapter 3
onwards the subject is developed axiomatically from three main postulates,
namely (i) the existence of discrete quantum states, whose energies are the
energy eigenvalues of the appropriate Schrodinger N particle equation; (ii)
the principle of equal a priori probabilities, according to which, at thermal
equilibrium, all the accessible microstates of a closed isolated system are
equally probable; (iii) the law of conservation of energy. These axioms are
applied to the case of two systems separated by a partition and surrounded
by adiabatic walls so that they make up a closed isolated system. (This
corresponds to the microcanonical ensemble.) The Boltzmann distribution
(canonical ensemble) and the grand canonical distribution are developed
later as special cases. For the benefit of more advanced readers, extra
topics are discussed in sections marked with a star (*). These sections can
be omitted in a first reading. The treatment is generally far more concise in
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these sections. Some of these sections, for example Chapter 7*, are
designed to make the more advanced reader really think about the subject.
Other starred sections are meant as an introduction to more advanced text
books. Whenever appropriate, references are given for more advanced
reading.

The book has three main aims:

Aim I: To interpret the laws of classical equilibrium thermodynamics in
terms of statistical mechanics. This is done mainly in Chapter 3. An
interpretation of heat, work and cycles in terms of statistical mechanics is
given later in Chapter 7 for the benefit of advanced readers. Ideally, the
students should have done an introductory course on classical equilibrium
thermodynamics. However, a review of the basic principles of classical
equilibrium thermodynamics is given in Chapter 1 in a form suitable for
comparison later with the approach to thermodynamics based on statistical
mechanics. After covering the basic principles from both points of view,
students who have not done an introductory course on classical equilibrium
thermodynamics, should be able to follow the application of these prin-

ciples to practical thermodynamic examples in any of the standard texts on
thermodynamics.

Aim 2: To develop the Boltzmann distribution in Chapter 4, and the
approach to thermodynamics based on the partition function in Chapter 5.
The properties of the Helmholtz free energy F and the Gibbs free energy G
are developed and interpreted in terms of both classical equilibrium ther-
modynamics and statistical mechanics in Chapter 6.

Aim 3: The application of statistical mechanics to quantum phenomena.
Planck’s radiation law is developed in Chapter 9. This is followed in Chap-
ter 10 by a discussion of the Einstein and Debye theories of heat capacities,
leading up to the concept of a phonon. In Chapter 11, the grand canonical
distribution is developed and used to derive the Fermi—Dirac and Bose—
Einstein distribution functions. Some introductory applications of the
Fermi-Dirac and Bose—Einstein distributions are given in Chapter 12.

The author has consulted many text books during the development of
the course on which this book is based. He wishes to acknowledge a par-
ticular debt to Statistical Physics by F. Reif and Thermal Physics by C.
Kittel, which were used originally as the main course texts. The early
influence of Basic Concepts of Physics by C. W. Sherwin will be apparent in
Chapter 2. I would like to thank Mrs M. Madden and Mrs M. Cornish for
typing the manuscript. Finally, I would like to acknowledge my debt to the
students at Exeter University, whose questions and enthusiasm made the
giving of the course, on which this book is based, such a pleasure.

W. G. V. ROSSER
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Chapter 1

A Review of Classical Equilibrium
Thermodynamics

1.1 INTRODUCTION

This Chapter gives a brief review of the main principles of classical
equilibrium thermodynamics, presented in a form convenient for compari-
son later in Chapters 2 and 3 with the microscopic approach to ther-
modynamics based on statistical mechanics. This Chapter should serve as a
refresher course for readers already familiar with classical thermodynamics.
Probably the best approach for readers, who have not yet done a full
course on classical thermodynamics, is to move on fairly quickly to the
microscopic approach presented in Chapters 2 and 3. They can then follow
the axiomatic approach to classical thermodynamics given by Callen [1].
Alternatively, having developed the basic principles of thermodynamics in
this book, they can read about the practical applications of thermodyn-
amics using a text book which follows the traditional approach to classical
thermodynamics, for example, Adkins [2], Pippard [3], Sears and Salinger
[4], and Zemansky [5]. As another alternative, they could go on to read a
book in which the microscopic and the macroscopic approaches to ther-
modynamics are combined, as for example in Reif [6]. A reader wanting to
do supplementary reading for this Chapter, is referred to any of the stan-
dard textbooks on classical thermodynamics such as Adkins [2], Pippard
[3], Sears and Salinger (4] and Zemansky [5].

1.2 THERMODYNAMIC SYSTEMS

Classical equilibrium thermodynamics developed, mainly in the
Nineteenth Century, as a series of laws relating the macroscopic ther-
modynamic state variables of a system, such as pressure and volume. This
was before the development of detailed atomic models in the Twentieth
Century. In the practical applications of thermodynamics, by a system we
mean that portion of the matter of the universe which is bounded by a
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closed surface, as shown in Figure 1.1(a). The rest of the universe forms
the surroundings of the system. The boundaries of the system are not
necessarily fixed. For example, if a gas expands, the volume of the gas
increases and the boundary of the gas system changes. [An example, is
shown later in Figure 1.2(a)]. If changes are made to the surroundings of
a system, after a period of time the macroscopic thermodynamic variables
of a homogeneous system reach new constant values. The system is then
said to be in a state of internal thermodynamic equilibrium.

As the general case of thermodynamics, it will be convenient to con-
sider the idealised example of two subsystems, labelled 1 and 2, making up
a composite closed system, as shown for example in Figures 1.1(b) and
1.1(c). The two subsystems are surrounded by rigid adiabatic walls. (An
adiabatic wall is a wall which does not conduct heat, whereas a diathermic
wall allows heat to flow through it). If the outer walls in Figure 1.1(b) are

fixed ngid
adiabatic partition
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Figure 1.1—(a) Example of a system in thermal equilibrium with its
surroundings. (b) An idealised example of two subsystems separated by a
fixed rigid adiabatic partition. The two subsystems are inside rigid, outer
adiabatic walls and form a closed system of fixed total energy, fixed total
volume and fixed total number of particles. (c) The partition in this case
is a fixed rigid diathermic partition.
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rigid, the total volume (V| + V,) of the subsystems does not change. The
total energy (U, + U,) and the total number of particles (N, + N,)} in
Figure 1.1(b) are also constant. The composite system made up from sub-
system 1 plus subsystem 2 is a closed system, that is an isolated system of
fixed total energy, fixed total volume and a fixed total number of particles.

Subsystems 1 and 2 in Figure 1.1(b) are separated by a partition. If the
partition is a fixed, solid, rigid, adiabatic partition, it is an internal con-
straint of the composite system which prevents the exchange of heat be-
tween subsystems 1 and 2. The partition also prevents changes in the vol-
umes of subsystems 1 and 2 and the exchange of particles between the two
subsystems. If the partition is a fixed, solid, rigid, diathermic partition, as
shown in Figure 1.1(c), heat can flow from one subsystem to the other, but
the partition is still an internal constraint of the composite system, prevent-
ing changes in the volumes of the subsystems and the exchange of particles
between the subsystems.

If the diathermic partition in Figure 1.1(c) is free to move, the volumes
of the subsystems can change and one subsystem can do mechanical work
on the other. If there are holes in the partition, the subsystems can
exchange particles.

To correspond with Figure 1.1(a), we can treat subsystem 1 in Figures
1.1(b) and 1.1.(c) as the surroundings and subsystem 2 as the system. As a
special case, we can assume that, in Figure 1.1(c), subsystem 1 is very much
bigger than subsystem 2, so that subsystem 1 acts as a heat reservoir for
subsystem 2. (A heat reservoir is a system whose heat capacity is so very
much bigger than the heat capacity of the system in thermal contact with it,
that heat flow from or to the heat reservoir does not change the
temperature of the heat reservoir significantly.)

1.3 MACROSCOPIC AND MICROSCOPIC PHYSICS

There is no need in classical equilibrium thermodynamics to make any
assumptions about atomic structure. The laws of thermodynamics were
developed before the development of detailed atomic models in the Twen-
tieth Century. The laws of thermodynamics lead to general relations be-
tween thermodynamic variables, enabling us to predict the value of one
thermodynamic variable from the values of other thermodynamic vari-
ables. The laws of thermodynamics cannot predict the actual magnitudes of
individual quantities directly from an atomic model. Our aim in Chapter 3
will be to interpret the laws of classical thermodynamics using a micros-
copic theory. Statistical mechanics can also be used to predict the values of
individual macroscopic quantities. This approach will be developed from
Chapter 4 onwards.

Macroscopic variables, such as pressure and volume, can be appreci-
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ated directly by our senses. Our sense of sight enables us to visualise,
qualitatively, macroscopic changes in volume. Our sense of touch responds
to changes in pressure. Atomic theory goes beyond the realm of direct
perception. An important quantity relating microscopic and macroscopic
quantities is Avogadro’s constant N 4, which is equal to the number of ZC

atoms in 0.012 kilogramme of the isotope 2C. Avogadro’s constant was

first determined accurately by Perrin. (One of his methods is outlined in
Problem 4.12). The experimental value of Avogadro’s constant N, is
(6.022 5 = 0.000 3) x 10** mol~'. A mole of any substance is the amount
of the substance which contains as many elementary units as there are '3C

atoms in 0.012 kilogramme of ';C. The elementary unit must be specified

and may be an atom, a molecule, an ion, an electron etc., or a group of such
entities. For example, a mole of electrons consists of 6.022 5 x 102 elec-
trons.

Avogadro’s constant is an extremely large number (see Problem 1.1).
The unaided eye can resolve about ten lines per millimetre at a distance of
25 cm, and should just about see a cube of side 0.1 mm and volume
107" m? held at a distance of 25 cm. X-ray analysis has shown that the
separation of the atoms in a solid is typically of the order of 107!° m, so that
each atom should occupy a volume of the order of 107*° m®. Thus a cube of
side 0.1 mm made from a solid would contain of the order of 10'® atoms,
which is a very large number. As a typical example of a small macroscopic
system, we shall therefore take a system of 10!® atoms, corresponding to
the smallest cube the unaided eye could see.

To illustrate a typical relation between a microscopic and a macros-
copic quantity, consider the definition of mass density as the mass per unit
volume. Though the diameter of an atom is typically of the order of
107 m, most of the mass of each atom is in the atomic nucleus, which has
a diameter of the order of 107'* m. On the atomic (microscopic) scale there
are enormous fluctuations in mass density in distances of the order of
107" m. The macroscopic mass density can be defined as

p = Am/AV (1.1)

where Am is the total mass in a volume element AV, which is large on the
atomic scale but small on the laboratory scale. For example, a cube of side
0.1 pm of a solid would contain about 10° atoms. The fluctuations in mass
density average out in such a volume element, which is still small on the
laboratory scale. Hence in a macroscopic theory, the mass density, defined
by equation (1.1), can be treated as a smooth continuous function of
position.

For purposes of discussion, assume that the system in Figure 1.1(a) is a
gas. The macrostate of the system can be specified by any three of the
macroscopic variables p, V, T and n, where p is the pressure, V is the



