Introduction to Management Science Eighth Edition

Bernard W.

Taylor III

Introduction to Management Science

Eighth Edition

Bernard W. Taylor III

Virginia Polytechnic Institute and State University

Prentice Hall

Upper Saddle River, New Jersey 07458

Library of Congress Cataloging-in-Publication Data

Taylor, Bernard W.

Introduction to management science / Bernard W. Taylor III.—8th ed.

p. cm.

ISBN 0-13-142439-4 (alk. paper) 1. Management science. I. Title.

T56.T38 2004 658.5--dc22

2003055739

Executive Editor: Tom Tucker Editor-in-Chief: P.J. Boardman Project Manager: Erika Rusnak Editorial Assistant: Dawn Stapleton

Senior Project Manager, Media: Nancy Welcher Executive Marketing Manager: Debbie Clare

Marketing Assistant: Amanda Fisher

Managing Editor (Production): Cynthia Regan

Production Editor: Denise Culhane Production Assistant: Joe DeProspero Permissions Supervisor: Suzanne Grappi Production Manager: Arnold Vila

Design Manager: Maria Lange Art Director: Janet Slowik

Interior Designer: Blair Brown/Jill Little Cover Design: Jill Little

Cover Illustration: Digital Vision, Ltd.
Photo Researcher: Melinda Alexander
Image Permission Coordinator: Nancy Seise
Manager, Print Production: Christy Mahon

Composition/Full-Service Project Management: Ashley Scattergood

Printer/Binder: Courier-Westford

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on appropriate page within text and on page 763.

Microsoft Excel® and Windows® are registered trademarks of Microsoft Corporation in the U.S.A. and other countries. Screen shots and icom reprinted with permission from the Microsoft Corporation. This book is not sponsored or endorsed by or affiliated with Microsoft Corporation.

Copyright © 2004, 2002, 1999, 1996, 1993 by Pearson Education, Inc., Upper Saddle River, New Jersey, 07458.

Pearson Prentice Hall. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department.

Pearson Prentice Hall™ is a trademark of Pearson Education, Inc.
Pearson® is a registered trademark of Pearson plc
Prentice Hall® is a registered trademark of Pearson Education, Inc.

Pearson Education LTD.
Pearson Education Singapore, Pte. Ltd
Pearson Education, Canada, Ltd
Pearson Education–Japan

Pearson Education Australia PTY, Limited Pearson Education North Asia Ltd Pearson Educación de Mexico, S.A. de C.V. Pearson Education Malaysia, Pte. Ltd

To Diane, Kathleen, and Lindsey To the memory of my grandfather, Bernard W. Taylor Sr.

Preface

The objective of management science is to solve the decisionmaking problems that confront and confound managers in both the public and the private sector by developing mathematical models of those problems. These models have traditionally been solved with various mathematical techniques, all of which lend themselves to specific types of problems. Thus, management science as a field of study has always been inherently mathematical in nature, and as a result sometimes complex and rigorous. When I began writing the first edition of this book in 1979, my main goal was to make these mathematical topics seem less complex and thus more palatable to undergraduate business students. To achieve this goal I started out by trying to provide simple, straightforward explanations of often difficult mathematical topics. I tried to use lots of examples that demonstrated in detail the fundamental mathematical steps of the modeling and solution techniques. Although in the last two decades the emphasis in management science has shifted away from strictly mathematical to mostly computer solutions, my objective has not changed. I have provided clear, concise explanations of the techniques used in management science to model problems, and provided lots of examples of how to solve these models on the computer, while still including some of the fundamental mathematics of the techniques.

The stuff of management science can seem abstract, and students sometimes have trouble perceiving the usefulness of quantitative courses in general. I remember when I was a student I could not foresee how I would use such mathematical topics (in addition to a lot of the other things I learned in college) in any job after graduation. Part of the problem is that the examples used in books often do not seem realistic. Unfortunately, examples must be made simple to facilitate the learning process. Larger, more complex examples reflecting actual applications would be too complex to help the student learn the modeling technique. The modeling techniques presented in this text are, in fact, used extensively in the business world and their use is increasing rapidly because of computer and information technology. Therefore, the chances of students using the modeling techniques that they learn from this text in a future job are very great indeed.

Even if these techniques are not used on the job, the logical approach to problem solving embodied in manage-

ment science is valuable for all types of jobs in all types of organizations. Management science consists of more than just a collection of mathematical modeling techniques; it embodies a philosophy of approaching a problem in a logical manner, as does any science. Thus, this text not only teaches specific techniques but also provides a very useful method for approaching problems.

My primary objective throughout all revisions of this text is readability. The modeling techniques presented in each chapter are explained with straightforward examples that avoid lengthy written explanations. These examples are organized in a logical step-by-step fashion that the student can subsequently apply to the Problems at the end of each chapter. I have tried to avoid complex mathematical notation and formulas wherever possible. These various factors will, I hope, help make the material more interesting and less intimidating to students.

Learning Features

This eighth edition of *Introduction to Management Science* includes many features that are designed to help sustain and accelerate the student's learning of the material. Some of these features remain from the previous editions while others are new to this edition. Several of the strictly mathematical topics—like the simplex and transportation solution methods—are on the accompanying CD-ROM. This frees up text space for additional modeling examples in several of the chapters, allowing more emphasis on computer solutions with Excel spreadsheets, and added additional homework problems. In the following sections, we will summarize these and other learning features that appear in the text.

Text Organization An important objective is to have a well-organized text that flows smoothly and follows a logical progression of topics, placing the different management science modeling techniques in their proper perspective. The first 10 chapters group together those chapters related to mathematical programming that can be solved using Excel spreadsheets, including linear, integer, nonlinear, and goal programming as well as network techniques.

Within these mathematical programming chapters the traditional simplex procedure for solving linear programming problems mathematically is located on the CD-ROM

that accompanies this text. It can still be covered by the student on the computer as part of linear programming or it can be excluded, without leaving a "hole" in the presentation of this topic. The integer programming mathematical branch and bound solution method is also on the CD-ROM. In chapter 6, on the transportation and assignment problems, the strictly mathematical solution approaches, including the northwest corner, VAM, and steppingstone methods, are also on the accompanying CD-ROM. Since transportation and assignment problems are specific types of network problems, the two chapters that cover network flow models and project networks that can be solved with linear programming, as well as traditional model-specific solution techniques and software, follow chapter 6 on transportation and assignment problems. In addition, in chapter 10, on nonlinear programming, the traditional mathematical solution techniques, including the substitution method and the method of Lagrange multipliers, are on the CD-ROM.

Chapters 11 through 14 include topics generally thought of as being probabilistic, including probability and statistics, decision analysis, queuing, and simulation. A module on Markov analysis is on the accompanying CD-ROM. Also, a module on game theory, is on the CD-ROM. Forecasting in chapter 15 and inventory in chapter 16 are both unique topics related to operations management.

New Topics and Sections in This Edition In an effort to keep the book current and abreast of contemporary trends in management science, and especially the increased emphasis on model development and solution with Excel spreadsheets, several chapters have been altered to include new sections. In chapter 1, a section on Decision Support Systems DSS has been added. In chapter 8, on project management, new sections have been added on Gantt Charts, activity-on-node networks, and Microsoft Project.

Excel Spreadsheets This new edition continues to emphasize Excel spreadsheet solutions of problems. Spreadsheet solutions are demonstrated in all the chapters in the text (except for chapter 2, on linear programming modeling and graphical solution), for virtually every management science modeling technique presented. These spreadsheet solutions are presented in optional subsections, allowing the instructor to decide whether to cover them. The text includes over 175 Excel spreadsheet screens, most of which include reference callout boxes that describe the solution steps within the spreadsheet. Files that include all the Excel spreadsheet model solutions for the examples in the text are included on the accompanying CD-ROM, and can be easily downloaded by the student to determine how the spreadsheet was set up and the solution derived, and to use as templates to work homework problems. In addition, appendix B at the end of the text provides a tutorial on how to set up and edit spreadsheets for problem solution.

Free Spreadsheet "Add-Ins" Several spreadsheet add-in packages are provided on the CD-ROM that is packaged with every copy of this text, as follows:

Excel QM For some management science topics, the Excel formulas that are required for solution are lengthy and complex and, thus, are very tedious and time-consuming to type into a spreadsheet. In several of these instances in the book, including chapter 6 on transportation and assignment problems, chapter 12 on decision analysis, chapter 13 on queuing, chapter 15 on forecasting, and chapter 16 on inventory control, a spreadsheet "add-in" called Excel QM is demonstrated. These add-ins provide a generic spreadsheet set-up with easy-to-use dialog boxes and all of the formulas already typed in for specific problem types. Unlike other "black box" software, these add-ins allow users to see the formulas used in each cell. The input, results, and the graphics are easily seen and can be easily changed, making this software ideal for classroom demonstrations and student explorations. This software is provided free on the accompanying CD-ROM.

Premium Solver for Education This is an upgraded version of the standard Solver that comes with Excel.

TreePlan Another spreadsheet add-in program that is demonstrated in the text is *TreePlan*, a program that will set up a generic spreadsheet for the solution of decision-tree problems in chapter 12 on decision analysis. This too is provided free on the accompanying CD-ROM.

Crystal Ball Still another spreadsheet add-in program that is included on the accompanying CD-ROM and demonstrated in the book is Crystal Ball. Crystal Ball is demonstrated in chapter 14 on simulation and shows how to perform simulation analysis for certain types of risk analysis and forecasting problems.

OPTIONAL Software Package: QM for Windows is the computer package that many students and instructors will prefer to use with this text. This software is very user-friendly, requiring virtually no preliminary instruction except for the "help" screens that can be accessed directly from the program. It is demonstrated throughout the text in conjunction with virtually every management science modeling technique, except simulation. Thus, for most topics problem solution is demonstrated via both Excel spreadsheets and QM for Windows. Files that include all the QM for Windows solutions for examples in the text are included on the accompanying CD-ROM. QM for Windows can be packaged with this text for a reasonable additional price. To order this software packaged with the text, please use ISBN 0-13- 124121-4.

New Problems and Cases Previous editions of the text always provided a substantial number of homework questions, problems, and cases to offer students practice. This

edition includes over 690 homework problems, 30 of which are new, and 48 end-of-chapter cases, 7 of which are new. In addition, four additional spreadsheet modeling cases are provided on this text's Web page, which can be accessed at http://www.prenhall.com/taylor.

Management Science Applications Boxes These boxes are located in every chapter in the text. They describe how a company, organization, or agency uses the particular management science technique being presented and demonstrated in the chapter to compete in a global environment. There are more than 60 of these boxes 16 of which are new, throughout the text and they encompass a broad range of business and public sector applications, both foreign and domestic.

Marginal Notes Notes are included in the margins that serve the same basic function as notes that students themselves might write in the margin. They highlight certain topics to make it easier for the student to locate them, they summarize topics and important points, and they provide brief definitions of key terms and concepts.

Examples The primary means of teaching the various quantitative modeling techniques presented in this text is through examples. Thus, examples are liberally inserted throughout

Total Exposures = 185000

the text, primarily to demonstrate how problems are solved with the different quantitative techniques and to make them easier to understand. These examples are organized in a logical step-by-step solution approach that the student can subsequently apply to the homework problems.

Solved Example Problems At the end of each chapter, just prior to the homework questions and problems, there is a section with solved examples to serve as a guide for doing the homework problems. These examples are solved in a detailed, step-by-step fashion.

Instructors' and Students' Supplements

For the Instructor:

■ Excel Homework Solutions—New to this edition are files for the instructor, which provide computer solutions for all but a few of the end-of-chapter homework and case problems in the text (see illustration below). Most of the computer solutions are Excel spreadsheets. This new edition includes 691 end-of-chapter homework problems and Excel solutions (including those using TreePlan and Crystal Ball) are provided for all

can be found (as shown above) on the instructor's CD-

ROM and the book website.

100,000

100000

but 40 of these problems. Excel solutions are also provided for 46 of the 48 end-of-chapter case problems in the text. QM for Windows solutions are provided for all but a few of the remaining homework problems and cases that cannot be easily solved by Excel. Instructors can electronically post these solutions for their students to access or download directly to students' computers. The homework solutions will be available on the Instructor's Resource CD-ROM.

- PowerPoint Presentations—PowerPoint presentations are available for every chapter to enhance lectures. Features figures, tables, Excel work, and main points from the text. Available on the text Web site or on the Instructor's CD-ROM. (0-13-142446-7)
- Instructor's Solutions Manual—the instructor's Solutions Manual contains detailed solutions for all end-of-chapter exercises and cases. In addition to a printed solutions manual, these solutions are provided electronically on the text's Web site and on a separate Instructor's CD-ROM in PDF format. (0-13-142445-9)
- Test Item File—The test item file contains a variety of true/false, multiple choice and problem solving questions for each chapter. (0-13-142440-0)
- Instructor's CD-ROM—this separate CD-ROM (0-13-142445-9), for instructors only, contains the following:

All of the print supplements listed above, in electronic form.

Electronic files (with solutions) for almost all of the end-of-chapter exerecises and cases. These files include solutions that use Excel, QM for Windows, Crystal Ball and TreePlan

All of the files and software programs on the students' CD-ROM

The TestGen software described below.

■ MyCW—this custom website, at www.prenhall.com/taylor contains all of the supplements listed above (Instructor's Solutions Manual, PowerPoint slides, Test Item File) in electronic form and available for download. In addition, Excel, Crystal Ball, TreePlan, QM for Windows* and Microsoft Project 2002* files for many of the examples in the text are on this website. (*QM for Windows and Microsoft Project 2002 are optional packages with this text.)

TestGen Software

The print Test Banks are designed for use with the TestGen test generating software. This computerized package

allows instructors to custom design, save, and generate classroom tests. The test program permits instructors to edit, add, or delete questions from the test banks; edit existing graphics and create new graphics; analyze test results; and organize a database of tests and student results. This new software allows for greater flexibility and ease of use. It provides many options for organizing and displaying tests, along with a search and sort feature. (0-13-142441-6)

For the Student:

■ FREE CD-ROM—A CD-ROM is packaged with every copy of this book. This CD-ROM contains the following software packages: Premium Solver for Education, Crystal Ball Professional 2000 (v2000.2)

Textbook/Student Edition, TreePlan and Excel QM. Also on the CD-ROM are Excel, Crystal Ball, TreePlan, QM for Windows, and Microsoft Project 2002 files for the examples in the text.

Acknowledgments

As with any large project, the revision of a textbook is not accomplished without the help of many people. The eighth edition of this book is no exception, and I would like to take this opportunity to thank those who have contributed to its preparation. First, I would like to thank my friend and colleague, Larry Moore, for his help in developing the organization and approach of the original edition of this book and for his many suggestions during its revisions. We spent many hours discussing what an introductory text in management science should contain, and his ideas appear in these pages. Larry also served as a sounding board for many ideas regarding content, design, and preparation, and he read and edited many portions of the text, for which I am very grateful. I also thank the reviewers of this edition:

I remain indebted to the reviewers of the previous editions: Nagraj Balakrishnan, Edward M. Barrow, Ali Behnezhad, Weldon J. Bowling, Rod Carlson, Petros Christofi, Yar M. Ebadi, Richard Ehrhardt, Warren W. Fisher, James Flynn, Wade Furgeson, Soumen Ghosh, James C. Goodwin Jr., Richard Gunther, Ann Hughes, Shivaji Khade, Shao-ju Lee, Robert L. Ludke, Peter A. Lyew, Robert D. Lynch, Dinesh Manocha, Mildred Massey, Abdel-Aziz Mohamed, Thomas J. Nolan, Susan W. Palocsay, David W. Pentico, Cindy Randall, Roger Schoenfeldt, Charles H. Smith, Lisa Sokol, John Wang, and Barry Wray.

I am also very grateful to Tracy McCoy at Virginia Tech for her typing and editorial assistance. I would like to thank my production editor, Denise Culhane at Prentice Hall for her valuable assistance and patience. Finally, I would like to thank my editor, Tom Tucker at Prentice Hall for his continual help, patience, and prodding.

Brief Contents

13 Queuing Analysis

Techniques D-1

Module E: Game Theory E-1

Module F: Markov Analysis F-1

539

Preface

1 Management Science

12 Decision Analysis

480

Linear Programming: Model Formulation and Graphical Solution 28	14 Simulation 578
and draphical solution 20	15 Forecasting 633
Linear Programming: Computer Solution and Sensitivity Analysis 68	16 Inventory Management 693
4 Linear Programming: Modeling Examples 104	Appendix A Normal Table 733
5 Integer Programming 171	Appendix B Setting Up and Editing a Spreadsheet 735
6 Transportation, Transshipment, and Assignment Problems 211	Appendix C The Poisson and Exponential Distributions 739
and hosignment i toolemb 211	Solutions to Odd-Numbered Problems 741
7 Network Flow Models 256	Glossary 749
	Index 755
8 Project Management 301	Photo Credits 763
White to the North	CD-ROM Modules
9 Multicriteria Decision Making 357	Module A: The Simplex Solution Method A-1
10 Nonlinear Programming 417	Module B: Transportation and Assignment Solution Methods B-1
10 Nonlinear Programming 417	Module C: Integer Programming: The Branch and Bound Method C-1
11 Probability and Statistics 442	Module D: Nonlinear Programming Solution

Contents

D C	
Preface	****
1 I Clucc	XV

1 Management Science

The Management Science Approach to Problem Solving 2

Observation 3

Definition of the Problem 3

Model Construction 3

Model Solution 4

- Time Oul: for Pioneers in Management Science 5
- Management Science Application: Management Science at Taco Bell 6
 Implementation 7

Model Building: Break-Even Analysis 7
Components of Break-Even Analysis 7
Computing the Break-Even Point 8
Graphical Solution 9
Sensitivity Analysis 10

Computer Solution 12
Excel Spreadsheets 13
The Excel QM Macro for Spreadsheets 14
QM for Windows 15

Management Science Modeling Techniques 16
Linear Mathematical Programming Techniques 16
Probabilistic Techniques 17
Network Techniques 17
Other Techniques 18

Business Usage of Management Science Techniques 18

 Management Science Application: Management Science at Federal Express 19

Management Science Models in Decision Support Systems 20 ■ Management Science Application: A Decision Support System for Aluminum Can Production at Coors 22

Summary 22 • References 23 • Problems 23 • Case Problems 26

2 Linear Programming: Model Formulation and Graphical Solution 28

Model Formulation 29

A Maximization Model Example 29

■ Time Out: for George B. Dantzig 30

Decision Variables 30 The Objective Function 30 Model Constraints 31

Graphical Solutions of Linear Programming Models 32 Graphical Solution of a Maximization Model 32

- Management Science Application: Operational Cost Control at Kellogg's 33

 The Optimal Solution Point 36

 The Solution Values 38

 Slack Variables 42
- Management Science Application: Estimating Food Nutrient Values at Minnesota's Nutrition Coordinating Center 44
 Summary of the Graphical Solution Steps 44
 A Minimization Model Example 45
 Decision Variables 45
 The Objective Function 45
 Model Constraints 46
 Graphical Solution of a Minimization Model 46
- Management Science Application: Chemical Production at Monsanto 48
 Surplus Variables 49

Irregular Types of Linear Programming Problems 50 Multiple Optimal Solutions 50 An Infeasible Problem 51

An Unbounded Problem 52

Characteristics of Linear Programming Problems 53
Properties of Linear Programming Models 53

Summary 54 • References 54 • Example Problem Solutions 54 • Problems 58 • Case Problems 66

3 Linear Programming: Computer Solution and Sensitivity Analysis 68

Computer Solution 69
Excel Spreadsheets 69
QM for Windows 73
Sensitivity Analysis 75

Changes in Objective Function Coefficients 75

 Management Science Application: Grape Juice Management at Welch's 77

Objective Function Coefficient Ranges with the Computer 80 Changes in Constraint Quantity Values 81 Constraint Quantity Values Range with the Computer 83 Other Forms of Sensitivity Analysis 84 Shadow Prices 86

Summary 87 • References 87 • Example Problem Solution 88 • Problems 90 • Case Problems 102

4 Linear Programming: Modeling Examples 104

A Product Mix Example 105

Decision Variables 106

The Objective Function 106

Model Constraints 106

Model Summary 106

Computer Solution with Excel 107

Computer Solution with QM for Windows 108

Solution Analysis 108

A Diet Example 109

Decision Variables 109

The Objective Function 110

Model Constraints 110

Model Summary 110

Computer Solution with Excel 110

Solution Analysis 111

An Investment Example 112

Management Science Application: The Evolution of the Diet Problem 113

Decision Variables 113
The Objective Function 113
Model Constraints 114
Model Summary 115
Computer Solution with Excel 115
Solution Analysis 116

 Management Science Application: A Linear Programming Model for Optimal Portfolio Selection at Prudential Securities, Inc. 118

A Marketing Example 118

Decision Variables 119

The Objective Function 119

Model Constraints 119

Model Summary 120

Computer Solution with Excel 120

Solution Analysis 121

A Transportation Example 121

Decision Variables 122

The Objective Function 123

Model Constraints 123

Model Summary 123

Computer Solution with Excel 124

Solution Analysis 124

A Blend Example 125

Decision Variables 125

The Objective Function 126

Model Constraints 126

Model Summary 127

Computer Solution with Excel 127

Solution Analysis 128

A Multiperiod Scheduling Example 129

Decision Variables 129

 Management Science Application: Gasoline Blending at Texaco 130

The Objective Function 13

Model Constraints 130

Model Summary 131

Computer Solution with Excel 131

Solution Analysis 132

A Data Envelopment Analysis Example 133

 Management Science Application: Analyzing Bank Branch Efficiency with DEA 134

Decision Variables 135
The Objective Function 135
Model Constraints 135
Model Summary 136
Computer Solution with Excel 136
Solution Analysis 136

Summary 137 • References 138 • Example Problem Solution 138 • Problems 140 • Case Problems 167

ix

5 Integer Programming 171

Integer Programming Models 172 A Total Integer Model Example 172 A 0–1 Integer Model Example 173 A Mixed Integer Model Example 174

- Management Science Application: Allocating Operating
 Room Time at Toronto's Mount Sinai Hospital 175
 Integer Programming Graphical Solution 176
 Computer Solution of Integer Programming
 Problems with Excel and QM for Windows 178
 Solution of the 0–1 Model with Excel 178
- Time Oul: for Ralph E. Gomory 179

 Solution of the 0–1 Model with QM for Windows 179
- Management Science Application: Minimizing Color Photographic Paper Waste at Kodak 181
 Solution of the Total Integer Model with Excel 181
 Solution of the Mixed Integer Model with Excel 182
 Solution of the Mixed Integer Model with QM for Windows 184

0–1 Integer Programming Modeling Examples 185 A Capital Budgeting Example 185

- Management Science Application: Optimal Assignment of Gymnasts to Events 185
 A Fixed Charge and Facility Location Example 187
 A Set Covering Example 190
- Management Science Application: Managing Prototype Vehicle Test Fleets at Ford 191

Summary 193 • References 193 • Example Problem Solution 194 • Problems 195 • Case Problems 206

6 Transportation, Transshipment, and Assignment Problems 211

The Transportation Model 212

- Time Oul: for Frank L. Hitchcock and Tjalling C. Koopmans 214
- Management Science Application: Transporting Sand for Airport Construction Landfill 215

Computer Solution of a Transportation Problem 215
Computer Solution with Excel 215
Computer Solution with Excel QM 216
QM for Windows Solution 218

The Transshipment Model 219 Computer Solution with Excel 221

The Assignment Model 222

Computer Solution of the Assignment Problem 223
Computer Solution with Excel 223

Computer Solution with QM for Windows 225

 Management Science Application: Assigning Managers to Construction Projects 226

Summary 226 • References 227 • Example Problem Solution 227 • Problems 228 • Case Problems 251

7 Network Flow Models 256

Network Components 257

The Shortest Route Problem 258

The Shortest Route Solution Approach 259

Computer Solution of the Shortest Route Problems

Computer Solution of the Shortest Route Problem with QM for Windows 262

Computer Solution of the Shortest Route Problem with Excel 263

The Minimal Spanning Tree Problem 265

Management Science Application: Reducing Travel Costs at the Defense Contract Management Agency 266
 The Minimal Spanning Tree Solution Approach 267
 Computer Solution of the Minimal Spanning Tree Problem with QM for Windows 269

The Maximal Flow Problem 270
The Maximal Flow Solution Approach 270

- Time Out: for E. W. Dijkstra, L. R. Ford Jr., and D. R. Fulkerson 271
- Management Science Application: Improving Service for Yellow Freight System's Terminal Network 272
 Computer Solution of the Maximal Flow Problem with QM for Windows 273
 Computer Solution of the Maximal Flow Problem with Excel 274

Summary 276 • References 277 • Example Problem Solution 277 • Problems 279 • Case Problems 295

Project Management 301

The Elements of Project Management 302
The Project Team 302
Project Planning 303

• Time Oul: for Morgan R. Walker, James E. Kelley Jr., and D. G. Malcolm 304

Project Control 304

Project Networks 304
The Gantt Chart 304
The CPM/PERT Network 305

 Management Science Application: Project "Magic" at Disney Imagineering 306
 Concurrent Activities 307

■ Time Oul: for Henry Gantt 307

The Critical Path 308 Activity Scheduling 310 Activity Slack 312

Probabilistic Activity Times 314
Probability Analysis of the Project Network 318

 Management Science Application: The Mars Pathfinder Project 320

CPM/PERT Analysis with QM for Windows 321

Activity-on-Node Networks and Microsoft Project 321

The AON Network Convention 321

Microsoft Project 322

Project Crashing and Time–Cost Trade-Off 324
Project Crashing with QM for Windows 328
The General Relationship of Time and Cost 328

 Management Science Application: Kodak's Advantix Advanced Photo System Project 329

Formulating the CPM/PERT Network as a Linear Programming Model 330

Solution of the CPM/PERT Linear Programming Model with Excel 331

Project Crashing with Linear Programming 333 Project Crashing with Excel 335

Summary 336 • References 337 • Example Problem Solution 337 • Problems 340 • Case Problems 354

9 Multicriteria Decision Making 357

Goal Programming 358 Model Formulation 358 Labor Goal 359 Profit Goal 360 Material Goal 360

Alternative Forms of Goal Constraints 361

Graphical Interpretation of Goal Programming 362 Computer Solution of Goal Programming Problems with QM for Windows and Excel 365

 Management Science Application: Developing Television Advertising Sales Plan at NBC 366
 QM for Windows 366

Excel Spreadsheets 367

Time Out: for Abraham Charnes and William W.
 Cooper 369

The Analytical Hierarchy Process 372

 Management Science Application: Assigning MBA Students to Project Teams at the University of South Carolina 373

Pairwise Comparisons 374

Developing Preferences Within Criteria 375

Ranking the Criteria 376

Developing an Overall Ranking 377

AHP Consistency 378

AHP with Excel Spreadsheets 380

 Management Science Application: Selecting a Site for a New Ice Hockey Arena with AHP 381

Scoring Model 384
Scoring Model with Excel Solution 3

Summary 385 • References 386 • Example Problem Solution 386 • Problems 390 • Case Problems 414

10 Nonlinear Programming 417

Nonlinear Profit Analysis 418 Constrained Optimization 421

Solution of Nonlinear Programming Problems with Excel 424

A Nonlinear Programming Model with Multiple Constraints 427

Nonlinear Model Examples 429 Facility Location 429 Investment Portfolio Selection 431

Management Science Application: Gas Production in Australia 432

Summary 434 • References 435 • Example Problem Solution 435 • Problems 435 • Case Problems 440

11 Probability and Statistics 442

Types of Probability 443
Objective Probability 443
Subjective Probability 444

Fundamentals of Probability 445

 Management Science Application: Treasure Hunting with Probability and Statistics 447

Statistical Independence and Dependence 449

Independent Events 449 Probability Trees 450

The District And April 1997

The Binomial Distribution 450

Dependent Events 453

Bayesian Analysis 455

Expected Value 456

 Management Science Application: A Probability Model for Analyzing Coast Guard Patrol Effectiveness 458

The Normal Distribution 458
Sample Mean and Variance 463
The Chi-Square Test for Normality 465
Statistical Analysis with Excel 468

Summary 470 • References 470 • Example Problem Solution 470 • Problems 472 • Case Problem 479

12 Decision Analysis 480

Components of Decision Making 481

Decision Making without Probabilities 482

Decision-Making Criteria 482

The Maximax Criterion 482

 Management Science Application: Decision Analysis at DuPont 483

The Maximin Criterion 483
The Minimax Regret Criterion 484

The Hurwicz Criterion 485

The Equal Likelihood Criterion 486

Summary of Criteria Results 486

Solution of Decision-Making Problems without Probabilities with QM for Windows 487

Decision Making with Probabilities 488

Expected Value 488

Expected Opportunity Loss 489

Solution of Expected Value Problems with QM for Windows 490

Solution of Expected Value Problems with Excel and Excel QM 490

Expected Value of Perfect Information 491

Decision Trees 493

Decision Trees with QM for Windows 495

Decision Trees with Excel and TreePlan 495

 Management Science Application: Evaluating Electric Generator Maintenance Schedules with Decision Tree Analysis 498

Sequential Decision Trees 498

Sequential Decision Tree Analysis with QM for Windows 501 Sequential Decision Tree Analysis with Excel and TreePlan 502

Decision Analysis with Additional Information 502

- Management Science Application: Decision Analysis in the Electric Power Industry 503
 Decision Trees with Posterior Probabilities 504
- Management Science Application: Discount Fare Allocation at American Airlines 506
 Computing Posterior Probabilities with Tables 508
 Computing Posterior Probabilities with Excel 508

The Expected Value of Sample Information 509

 Management Science Application: Scheduling Refueling at the Indian Point 3 Nuclear Power Plant 510
 Utility 510

Summary 512 • References 512 • Example Problem Solution 512 • Problems 516 • Case Problems 533

13 Queuing Analysis 537

Elements of Waiting Line Analysis 538
The Single-Server Waiting Line System 539
The Queue Discipline 539

■ Time Out: for Agner Krarup Erlang 540

The Calling Population 540

The Arrival Rate 540

The Service Rate 540

The Single-Server Model 541

The Effect of Operating Characteristics on Managerial Decisions 544

Computer Solution of the Single-Server Model with Excel and Excel QM 546

Computer Solution of the Single-Server Model with QM for Windows 548

Undefined and Constant Service Times 548

 Management Science Application: Reducing Arrest-to-Arraignment Times in New York City 550

Computer Solution of the Constant Service Time Model with Excel 551

Computer Solution of the Undefined and Constant Service Time Models with QM for Windows 552

Finite Queue Length 552

Management Science Application: Providing Optimal
Telephone Order Service at L. L. Bean 554
 Computer Solution of the Finite Queue Model with Excel 554
 Computer Solution of the Finite Queue Model with QM for Windows 555

Finite Calling Population 555

Computer Solution of the Finite Calling Population Model with Excel and Excel QM 557

Computer Solution of the Finite Calling Population Model with QM for Windows 558

The Multiple-Server Waiting Line 558

Computer Solution of the Multiple-Server Model with Excel and Excel QM 562

Computer Solution of the Multiple-Server Model with QM for Windows 563

Additional Types of Queuing Systems 563

Summary 564 • References 565 • Example Problem Solution 565 • Problems 566 • Case Problems 574

14 Simulation 576

The Monte Carlo Process 577
The Use of Random Numbers 577

- Management Science Application: Improving the Red Cross Blood Donation Process Using Simulation 581
- Time Out: for John Von Neumann 582

Computer Simulation with Excel Spreadsheets 583 Decision Making with Simulation 586

Simulation of a Queuing System 588 Computer Simulation of the Queuing Example with Excel 591

• Management Science Application: Simulating the Israeli Army Recruitment Process 592

Continuous Probability Distributions 593
Simulation of a Machine Breakdown and Maintenance
System 594

Computer Simulation of the Machine Breakdown Example Using Excel 596

Statistical Analysis of Simulation Results 598

Crystal Ball 600

Simulation of a Profit Analysis Model 600

Verification of the Simulation Model 608

Areas of Simulation Application 608

Queuing 609

Inventory Control 609

Production and Manufacturing 609

Finance 609

Marketing 609

Public Service Operations 609

Environmental and Resource Analysis 609

 Management Science Application: Simulating a 10-km Race in Boulder, Colorado 610

Summary 610 • References 611 • Example Problem Solution 611 • Problems 613 • Case Problems 628

15 Forecasting 631

Forecasting Components 632 Forecasting Methods 633

Time Series Methods 634 Moving Average 634 Weighted Moving Average 637

 Management Science Application: Product Forecasting at Nabisco 638 Exponential Smoothing 639

 Management Science Application: Forecasting Customer Demand at Taco Bell 639

Adjusted Exponential Smoothing 642 Linear Tread Line 644

- Management Science Application: Forecasting Demand for Discount Fares at American Airlines 644
 Seasonal Adjustments 646
- Management Science Application: Forecasting Service Calls at Federal Express 648

Forecast Accuracy 648 Mean Absolute Deviation 649 Cumulative Error 650

 Management Science Application: Demand Forecasting at National Car Rental 652

Time Series Forecasting Using Excel 653 Computing the Exponential Smoothing Forecast with Excel QM 655

Time Series Forecasting Using QM for Windows 655 Regression Methods 656

Linear Regression 657 Correlation 658

 Management Science Application: Competing with Accurate Daily Demand Forecasts at Vermont Gas Systems 660

Regression Analysis with Excel 660 Regression Analysis with QM for Windows 664 Multiple Regression with Excel 665

Summary 667 • References 667 • Example Problem Solutions 668 • Problems 670 • Case Problems 689

16 Inventory Management 691

Elements of Inventory Management 692 The Role of Inventory 692 Demand 693 Inventory Costs 693

Inventory Control Systems 694 Continuous Inventory Systems 694 Periodic Inventory Systems 695

■ Time Oul: for Ford Harris 696
Economic Order Quantity Models 696
The Basic EOQ Model 696
Carrying Cost 697

Ordering Cost 699

Total Inventory Cost 699
EOQ Analysis over Time 701
The EOQ Model with Noninstantaneous Receipt 702
The EOQ Model with Shortages 705

■ Management Science Application: Online Inventory Management at IBM 708

EOQ Analysis with QM for Windows 709 EOQ Analysis with Excel and Excel QM 709

Quantity Discounts 710

Quantity Discounts with Constant Carrying Costs 711
Quantity Discounts with Constant Carrying Costs
as a Percentage of Price 712

Quantity Discount Model Solution with QM for Windows 714

Reorder Point 714
Safety Stocks 715

Determining Safety Stocks Using Service Levels 716
Reorder Point with Variable Demand 716
Determining the Reorder Point with Excel 717
Reorder Point with Variable Lead Time 718
Reorder Point with Variable Demand and Lead Time 718

 Management Science Application: Establishing Inventory Safety Stocks at Kellogg's 719

Order Quantity for a Periodic Inventory System 720
Order Quantity with Variable Demand 720
Determining the Order Quantity for the Fixed-Period Model
with Excel 721

Summary 722 • References 722 • Example Problem Solutions 722 • Problems 724 • Case Problems 731

Appendix A

Normal Table 733

Appendix B

Setting Up and Editing a Spreadsheet 735

Titles and Headings 735

Borders 735

Column Centering 736

Deleting and Inserting Rows and Columns 736

Decimal Places 736

Appendix C

The Poisson and Exponential Distributions 739

The Poisson Distribution 739

The Exponential Distribution 740

Solutions to Selected Odd-Numbered Problems 741

Glossary 749

Index 755

Photo Credits 763

CD-ROM Modules

Module A: The Simplex Solution Method A-1

Module B: Transportation and Assignment Solution Methods B-1

Module C: Integer Programming: The Branch and Bound Method C-1

Module D: Nonlinear Programming Solution Techniques D-1

Module E: Game Theory E-1

Module F: Markov Analysis F-1

Management Science

The Management Science Approach to Problem Solving

Observation • Definition of the Problem • Model Construction • Model Solution • Implementation

TIME OUT for Pioneers in Management Science

Management Science Application: Management Science at
Taco Bell

Model Building: Break-Even Analysis

Components of Break-Even Analysis • Computing the Break-Even Point • Graphical Solution • Sensitivity Analysis

Computer Solution

Excel Spreadsheets • The Excel QM Macro for Spreadsheets • QM for Windows

Management Science Modeling Techniques

Linear Mathematical Programming Techniques • Probabilistic Techniques • Network Techniques • Other Techniques

Management Science Application: Management Science at Federal Express

Business Usage of Management Science Techniques

Management Science Models in Decision Support Systems

Management Science Application: A Decision Support System for Aluminum Can Production at Coors Summary · References · Problems · Case Problems

