i
i

ey

o
Wy
bl

N i
i i o
i il {8 i - i HA-VM i " ; W " i - il "
SR T el s e i w a Bl i ¢1m<1w el o
i i o g

HW

THE
OBJECT-ORIENTED
SERIES

An Object-Oriented
Introduction to Computer Science
Using Eiffel

Richard S. Wiener

For book and bookstore information

http://www.prenhall.com

Prentice Hall PTR
Upper Saddle River, New Jersey 07458

Library of Congress Cataloging-in-Publication Data
Wiener, Richard, 1941—
An object-oriented introduction to computer science using Eiffel / by Richard S. Wiener
p. cm.-- (Prentice Hall object-oriented series)
Includes index.
ISBN 0-13-183872-5
1. Object-oriented programming (Computer science) 2. Eiffel (Computer program
language 3. Computer science.. I Title. I Series.
QA76.64.W44 1996
005.13'3--dc20 96-2186
CIP

Editorial/production supervision and Interior Design: Joanne Anzalone
Manufacturing manager: Alexis R. Heydt

Acquisitions editor: Paul Becker

Editorial assistant: Maureen Diana

Cover design: Design Source

Cover design director: Jerry Votta

© 1996 by Prentice Hall PTR
Prentice-Hall, Inc.

A Simon & Schuster Company

Upper Saddle River, New Jersey 07458

The publisher offers discounts on this book when ordered in bulk quantities.
For more information, contact:

Corporate Sales Department
Prentice Hall PTR

1 Lake Street

Upper Saddle River, NJ 07458

Phone: 800-382-3419, Fax: 201-236-7141
E-mail: corpsales @prenhall.com

All product names mentioned herein are the trademarks of their respective owners.
All rights reserved. No part of this book may be

reproduced, in any form or by any means,

without permission in writing from the publisher.

Printed in the United States of America
10987654321

ISBN 0-13-183872-5

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

This book is dedicated with all my love to my sons
Henrik, Marc, and Erik.

Preface

There is a strong need for a CS 1 book that from the very beginning
presents the basic principles of computer science from an object-oriented
perspective and is supported by a friendly, consistent, and relatively easy
to learn object-oriented programming language. An object-oriented per-
spective represents a further evolution in the trend to emphasize abstrac-
tions in computer problem solving and the use of abstract data types in
particular in early computer science courses.

This book is aimed at the beginning computer science student
enrolled in a rigorous computer science curriculum. It is also aimed at
practicing software development professionals new to the object para-
digm who wish a gentle introduction to many features of the Eiffel lan-
guage and the object paradigm.

This book presents the basic ideas of object modeling from the very
beginning. Before a student learns to “program,” he or she should be
introduced to modeling. It is important that the beginning student as well
as practicing software development professionals view programming as
only part of the intellectual process associated with software development
and computer science. Booch class and object scenario diagrams are intro-
duced early as a means of providing notational support and more impor-
tantly support for the notion of object modeling.

The object-oriented perspective is quite distinct from the older tradi-
tional approach of having students learn the rudiments of programming
from the bottom up. That is, first learn about scalar types, variables,

PREFACE

assignment operations, branch and loop program control structures, and
much later the concept of functional abstraction. Although in recent years
functions have been introduced earlier in some CS 1 books, it is often the
case that they are first introduced in the middle of the book.

Using an object-oriented perspective, functions and the underlying
data model that they are manipulating are introduced from the very
beginning. The class is introduced early as a frame from which to intro-
duce and implement simple algorithms and provide a model for objects.

Some computer science departments have been moving towards C or
C++ to support CS 1. This author believes that this is a grave mistake.
Although both of these languages are commercially important and widely
used outside of the university, which probably accounts for their adoption
as a CS 1 language, they are poor candidates to support CS 1. Both lan-
guages are complex, are relatively hard to read, provide relatively little
safety to the beginning programmer, and are relatively inconsistent (par-
ticularly C++). They both require the student to take a fairly low-level sys-
tems view quite early. It therefore becomes quite challenging for the
beginning student to master low-level details and at the same time
develop a high-level vision and sensitivity concerning the safe construc-
tion of software systems. The Eiffel language is much better suited for this
task.

Eiffel is quite readable, friendly, and consistent. The dangerous arti-
fact of pointers is totally missing. Memory management is handled auto-
matically. Eiffel’s assertion handling mechanism provides an opportunity
to emphasize safe and defensive programming. Its clean and simple syn-
tax and semantics for handling generic components, late-binding, and
inheritance allow a student to focus on the fundamental concepts of soft-
ware construction and algorithm design without having to become dis-
tracted with the myriad of complex language details required, for
example, if one uses C++.

Chapter 1 provides a short historical perspective related to computa-
tion and computers.

Chapter 2 introduces the concept of objects and object modeling.
Objects as abstractions of reality are presented. The noun-verb metaphor,
the notion of state, object scenarios and messages, classification, inherit-
ance, aggregation and the uses relationship are introduced. An introduc-
tion to object-oriented programming is provided through a simple
example. Some of the Booch analysis and design notation and the con-
cepts behind the notation are introduced.

Chapter 3 introduces the reader to the world of programming using
Eiffel. The basic elements of an Eiffel software system are presented. These

PREFACE

include creating and destroying objects, basic types, reference versus
value semantics, object assignment, object copying, object cloning, branch-
ing, iteration, and the construction of routines. In addition the use of basic
Eiffel libraries is introduced.

Chapter 4 focuses on the design of algorithms. A graduated set of
problems of increasing complexity are used to illustrate the rudiments of
algorithm design and develop sensitivity to algorithm complexity.

Chapter 5 presents the reader with some first examples of complete
Eiffel software systems. A preview is provided concerning the use of
inheritance, late-binding, and assertions. A pair of ordinary dice are simu-
lated. Then a pair of unusual non-standard dice are constructed using
inheritance. A race horse game to be played by a person against the com-
puter is built that uses the non-standard dice. Finally, a counterfeit coin
weighing game is created that allows a person to play with the assistance
of the computer.

Chapter 6, “The Construction of Eiffel Classes,” presents more detail
related to the various sections of an Eiffel class and their use. Object cre-
ation, routine redefinition and renaming, and export scope are among the
topics covered. The important facility of assertion handling is presented in
this chapter.

Chapter 7 discusses the issue of building reusable container classes.
Several classic container classes are presented including STACK, QUEUE,
UNORDERED_LIST, ORDERED_LIST, DEQUE, and SET. The BIT data
type is introduced and used as part of the implementation of SET.

Chapter 8 introduces recursion as a design technique. First the
mechanics of recursion are presented. The relationship between recursion
and iteration is discussed and illustrated. Several smaller examples that
illustrate recursive designs are presented including binary search of an
array and quicksort. The chapter ends with an intermediate sized example
involving a depth-first search of a graph. The reader is introduced to the
flavor of more advanced algorithm design, an important foundation sub-
ject in computer science.

Chapter 9 presents polymorphism and late-binding as a design prin-
ciple. After illustrating the principle with a simple and somewhat sterile
example, an initial and improved version involving the analysis, design,
and implementation of a complete software system are presented. Booch
class and object scenario diagrams are used to support the analysis and
design.

PREFACE

Acknowledgments

[would first like to thank Paul Becker, publisher at Prentice Hall, for
his support and encouragement from this project’s inception to its comple-
tion.

[am in debt to several outstanding reviewers who have provided
extremely useful and constructive criticism of the first-draft manuscript.

Jim McKim of the Hartford Graduate Center, friend, Eiffel mentor,
and outstanding critic, has examined every line of code in this manuscript
and has made many useful suggestions. As before, Jim, my simple words
of thanks are really not enough to thank you for your efforts way above
and beyond the call of duty. The entire Eiffel community owes you many
thanks for the continuing contributions that you are making.

Brian Henderson Seller, from the University of Technology in Sydney,
has provided many helpful comments, particularly regarding the sections
of the book dealing with object modeling.

Meilir Page Jones, President of Wayland Systems, has provided tre-
mendous help in his critical but extremely constructive review of the
manuscript. His many annotations in the first-draft manuscript have pro-
vided significant help in improving the book.

[am particularly appreciative of the timely help provided by Jim,
Brian, and Meilir because I know how busy they are. Thank you all for
finding the time to fit this manuscript review into your busy schedules.

[thank Margaret Reek for looking at a near final version of the manu-
script and providing useful and constructive comments.

[wish to thank Interactive Software Engineering in Santa Barbara for
continuing to provide me with their latest Eiffel software. It is my hope
that the Professional Version of Eiffel for MSDOS/Windows will make this
elegant language much more accessible to students and professionals
alike.

[wish to thank Bertrand Meyer, the original designer and implemen-
tor of Eiffel, for his encouragement and support.

[also wish to thank Rock Howard and Madison Cloutier and every-
one at Tower Technology for their technical support, tremendous encour-
agement and latest Eiffel products. Their outstanding contributions to the
Eiffel community are noteworthy.

With great love and appreciation, 1 thank my wife Hanne for her
help, constructive criticism, and continual encouragement.

Richard Wiener

Contents

COMLENES ... il
Preface. xiii
CHOPECF D ovvae s vumomn v s simmmen s pamsin v samamas ¥ omesn i s REEES 5 AL 8 1
Programming and SOftWAareoo i e 1
L1 Conmpuler SrIBIOE « sonrvs s crmmes s s s0amen v ¢ §amuss 55 ECRNI 18 SN mRE & 5 1
1.2 Computer programs......... ...ttt 3
1.3 Programyming IANBUAEES . covmass s nmens s somases s smasss s s sssusos s 3
1.4 Structured and object-oriented programming 4
1.5 . Commmion Software tool8 s s sosvasisrossasssisunaisnoahisisicssnans 6
1§ Propummumiig. ... cummrsscaaambs e EREEr gy CRRAESF EBQEEY § F E LFER 3 7
16.1 Programuning IarEuames «oses oo cvmes s s snmasrs s snumes s s sanoass 7

1.7 Goalsofthisbook 8
1.8 EXeIIBEB. .. icowis s sammpss sawasss g ansues s 390 BnRs ¢ EMROUA: § 3 §AERE 10
CRAPEBEF 2i s s svvvins s naons s oo amiaas s esvisioborissssvanesssnmansss 11
An Object-Oriented Approach to Problem Solving 11
2.1 Object, objectseverywhere. i 12

2.1.1 Ordinary objects 12
2.1.2 Objects as abstractions

CONTENTS

2.2 The object MOdel. . .ccowrssssmnvssecmmmesscamammssmmnsss s smsons 15
2.2.1 Anobjectmodelexamplel 15
2.2.2 The noun-verb and noun-noun metaphors 16
223 Internalstate 17
2.2.4 Object scenarios and messagescoriiieennnnon.. 18
2.2.5 Pofafielters « s cowsuas s samuns s yames s s summme sy vsunsses g v 19

2.3 Relationships among objects i 2]
2.3.1 Inheritance ocows s soasnssssonmssissamsnng s anmuzes sy cuo 22

2,311 ClassifiCation .. : s sosnsic s vwasss s savsasiscasvanssaian 23
2:3:2 AGETORAtION o s 0 vovms s s vosmonisemmpns s sasamss s aamesuns s o 24
2.3.3 Vses relatioNSHIP . svess v nsnnnsssumursnsvommnssgassmmwesyses 25

24 Abstractdatatypes.............. 26

2.5 Producersand consumers 27

2.6 Object MOdeling: « v ssvwns cscavmnsssomwasrsssnansss cammuns s i 29
2.6.] ANAIVEIS . owwrsicsmmes s s sumunrs cnmunrs oo inmnys s qsmpmaes s o 29

2.6.1.1 Aggregation relationship... ..o vvinsmeservvmsivinis 30
2.6.1.2 Uses relationship.................................... 31
2.6.1.3 Inheritance relationship.................. 31
2.6.2 Analysisofanelevator il 32
2.6.3 Design ... 33

2.7 SUMIMATY ...\ttt e 34

28 EXOTCIBBE «wao i comwnns sk v amns s 8 6ARUSHT 508 ME 048 6 5 dnnss v adimemunss 36

29 References.iiiiii 38

CHAPLEYS 1o v s vwoimwa s momein s s umsns o s samuus s wmeains s ooauysinnas 39
The Basic Elements of Eiffe]l PROQUAME c s o v comvsiv s somanes s v ssmasss s sausnis s 39

3.1 Programming........... 39

3.2 The Eitfel Language oo s s s comus s s vnvunve svsnmmrs s vwassssssampsess 42

3.3 Creating and destroying objects 42

3.4 Basic types, default values, and assignment. 45

3.5 Ordinary or reference type objects................................. 46

3.6 Copyingobjects...... 47

BT CLOTIE s ¢ vonmes s ponawses swwans o5 sEamAEs s REMALI 8§ KEFA0A S § fhians & 48

3.8 Basic operators withexamples 49

39 Branchifng .coses:oasmuuss vnwnsrs s somans s enmansse shwansssissmnas 53

3.10 Tteration (loop).o i 56

CONTENTS

301 ROULINES! . . . vvniss s mammis s.0msans s i sauesss smeRmas f snmmassss mmns 58
302 AITaysottt i e e 61
B3 SHIINES . o vttt 69
3.14 Basic input abd oWPUE: v oo ssnvass s s manesssnnnams s sosnnprs s v 77
3.15 Mathematical routines and “number crunching” 83
3.16 Files and secondary storage.................. i 86
817 SUMINBEY <5 s vermans s swumsas s s snETNLL ¢ AREHS 3 fERESRI 2 EIT DTS 8 310 92
318 EXOICISES . oo oottt ettt e e 95
COBPIEPT., v vsens s rusmes s erasass s prniosss s rasngs s renmts) rpanss s s 97
AIQOTTERINS . .. 97
4] Introduction. . .ccease . inunvss casnass sonmmnes s s s 55 fmumags s 97
42 Problems versus theirinstances oL 98
43 A taste of algorithms—some simple examples....................... 99
4.3.1 Algorithms for finding smallest and largest array values 99

4.3.2 Simple sorting algorithml 101

4.4 The efficiency of algorithms 104
45 Computing faster, . . .uvy:svonsss s smmmurs ssmmnass s nmanue s s vamumss 105
4.5.1 Illustrative example—subvector problem forarrays 105

46 SOME MOre SoTHNE «svas 2 scaanrvssusansss svsasssssvnags vs sAMBHENS 110
4.6.1 Bubble-sort 110

4.6.2 Gap-sort—a magic number and a fast variant of bubble-sort114

4.6.3 Insertion-sort 117

47 Hard problemis. . . coxcrre s snnmmss s samarns s snnnmevs v swgores s sumns 119
4.7.1 Traveling salesperson problem 119

4.7.2 Knapsack probleml 120

48 Concluding remarkss. . couwmss s cvssovss oxmsmss s emnssss es saaas 121
49 SUMMATY ... e e e 121
410 EXSTCISES . cnwns s sosmumusneannss s siBass s 5o 0i@ses svEsanss s 0 @ms 122
4,11 REICIENCOS: : vvnvi s savssos Faoraas s i.60s0si FEREvasd s 4ERFasE & 8 40m0 123
CHAPTEH B s s iomnsiaisvassis viandad 10 eswnis wbomdds i wuasds b vowsis 125
Building Some Simple Eiffel Systems. i 125
5.1 DICe .ot 125
5.1.1 Random number generators 126

5.1.2 Implementation of dieclass 127

CONTENTS

52 Constantattributes 131

5.3 Ahorse race using unusualdice............... ... o oL 131

5.3.1 Analysis and design of horseracegame 133

5.3.2 A fOUr-WaY TACE wvv vttt e e e 143

DA SUBMATY ¢ o sonunrsssunnesssrmsnrrs dvnoeses gamamas s wnwns ¢ sa 143

55 EXercises........ovscivasviiisasavesssnns hEFEENEEE S EANEE AW € B 143

5.6 References. 143

CRAPEEFG ., v ovus s vvnonnssnsmsmssvessnssenssanssvneanns rrasnye vy 145

TheConstruction of Eiffel CIASSES +..csvv s sossurn s vsmens o s sunsms s cxemuras s 145

6.1 An overview of the components of an Eiffelclass................... 145

6.2 Creation 147

6.2.1 Subclasscreation il 148

6.2.2 More advanced subclass creation 149

6.3 Inheritance 151

6:3.1 BExtension—8ubEyPes s ciavunii vaamnos s snsnns s iaouni 152

6.3.2 Specialization—the redefine subclause 152

6.3.3 Selective export—the export subclause 153

6.3.4 Renaming inherited routines—the rename subclause 154

6.3.5 The select subclause 156

6.4 Abstract classes using Eiffel’s deferred class facility 158

6.5 Storage versus computation: Attributes versus routines 164
6.6 Protecting and documenting routines—assertions and programming by

CONEFACE . < cnmnas s sammmas s 5.08@ani s 008885 swmommes s cmonsssononsna 166

6.6.1 Account classes revisited with assertions 170

6.6.2 Propagation of assertions through inheritance 174

6.7 SUMMATY 177

68 EXOrCISES . .comwsrsvuesuors cromnns s anmmnvss snmasas s cmasuns s §mwsws 181

CRAPLEE v s s vononms osvsnma s snesnis osvssnsi e o ks Ese 6 68u6548 0 6ewss 183

Constructing Classes for Reuse—Generic Container Classes 183

70 Stack ... 185

7.1.1 Static implementation of stack oL 186

7.1.2 Dynamic implementation 192

7.2 Unordered list with duplicates notallowed 196

7.2.1 Interface to UNORDERED_LIST class 196

7.2.2 Implementation of class UNORDERED_LIST 202

CONTENTS

7.2.3 Discussion of implementationcovevisincvviiinneiiiaion 210
7231 Thedatamodel 210
7.2.3.2 Internal routine find 211
7.2.3.3 Public routine tem_Defore. . ;s casse v v smases e sommann oo 211
7.2.3.4 Public routine insert_front 212
7.2.3.5 Public routine insert_back......... 212
7.2.3.6 Public routine insert_before. 213
7:2.:3.7 PubliC ToUutiNe FEMODE .« v oo sismuis s savvassnsonsans s 214
7.2.3.8 Public routines remove_front and remove_back. 215
7.2.3.9 Public routines remove_after and remove_before. 215
7.2.3.10 Public routine reverse_sequence 215
7.3 Unordered list with duplicatesallowed 216
74 Thestack tevisited: cven s cavensiiisvmiiiiaivnis s essmmns comonmmns 217
75 Thequeue....... 219
7.6 SUMMATY 221
7.7 BEXBICISES (snmvn s s svmnmypas seasvs s evmamess cnBansss snmanssssdmnens 223
7.8 ReferONCES. v v s s iowwaiiscu06nstsssiuties smmmansnssoanansssonsans 224
CHAPEET Buass i innmaasinnnass i sam860 i s nbmmuns comanaggenboessprns 225
Recursion as a Design Principle. i i, 225
8.1 The mechanics of recursion............ ..., 225
8.2 Relationship between recursion and iteration 232
8.3 Recursionusedindesign.............. 235
8.3.1 Binary search of sorted arrays 235
8.3.2 Quicksort—an efficient recursive sorting algorithm 239
8.3.3 BMary SearChifree «v.cvswnss rs vumss s s snswsns s snmmassssaawss 243

8.4 One final and more advanced but important application of recursion—
depth-first search of a graph and airline connection problem. 252
8.5 Some parting comments about recursion o oL 264
8.6 Summary 265
8.7 EXOICISES . covnvs v spiosus s smsasss s s ioanis e a8esn 54085mns i ¥ moms 265
CRAPIEE Qs o s sismns s oiomion s s seiiss s iassndds sosdass s bbsdassvasas 269
Polymorphism as a Design Principle i, 269
9.1 Late-binding and polymorphism 271
9.2 A case study that features polymorphism.......................... 275
921 Specification® , .smecss vvamsrs s tomaes s smunms s vampaEs ¢ 8 inws 276

CONTENTS

9.2.2 The analysisand deSigncccecirnverercirrrvnervnnns 278

9.2.3 Implementation detailst 286

924 OUPUE . osisssonunsssasnansnsanmnss sannusse swuanss s sawns 300

9.3 Version 2—improved design and implementation 302
9.3.1 Revised implementationc..cocvcseemsnnrrimssasssavann 303

QA4 SUDADAATY 5 s coniwn st s samsmss s aaEans & 6msias s bawsnons sNROEHEs b5l 315
9.5 EXeICiSeSoouiniiiiiiii i i i 315
Appendix 1, .. covuvveroniitoisnnnseanssataionssisisivosisasonsiines 323
Interface 10 SERGCIASS « oo vs s tamnois sommmis s sadnmes sisssmbssasinnes s isas 323
APPeRdiX 2. ..ouooiivinescrvonniiacoswnnis sosnssss wodhois o onnies s 339
Interface to Class PLAIN_TEXT _FILE iiiiiiiiuunnnnnn. 339
APPEBRBIX B siv54 s svss5as anasssss ovssaass s d@FsdesonTnass sawsssisd 367
Class RANDOM_NUMBER. . i s svson s cassosssioonssissaassssssavavsssssn 367
FAACK oo o commns s ounnine s vnsosss s owasiuss sisaosssesnsssssnsonssos 371

Chapter

Programming
and Software

1.1 Computer science

Many readers of this book may be enrolled in their first computer sci-
ence course. Welcome to computer science! Other readers may be wishing
to learn more about object-oriented software development. Welcome to
this exciting paradigm! (The word paradigm means “a set of forms all of
which contain a particular element” —Random House Dictionary.)

Typically a first course in computer science introduces a program-
ming language and focuses on programming. Some students may leave a
CS 1 course with the impression that computer science is the study of pro-
gramming. This is not true.

Software is the end product of an engineering process that involves
requirements, specifications, analysis, and design. Software is a tangible
and visible entity. It is the instructions that permit a digital computer to
perform a variety of tasks. Software is a product often shrink-wrapped
with a fancy cover. Software is a multibillion dollar business.

A programming language provides a notation in which to express
algorithms and information structures. Reasoning can be done with this
notation. But to many computer scientists, programs represent the least
creative, most routine, and perhaps most tedious part of the software
development process. In fact, some computer scientists do not even pro-
gram.

COMPUTER SCIENCE

To other computer scientists, the creation of programs and software
systems is what computer science is all about. The theory of programming
languages underscores the importance of programming. But computer sci-
ence is much more than programming.

Computer science deals with the art, craft, and science of computa-
tion using a digital computer. Computer science is a theoretical as well as
practical discipline; a theoretical as well as applied science. The theory of
automata, artificial and natural languages, learning and cognition, infor-
mation, data structures, complexity, and algorithms play a central role and
serve as a theoretical underpinning for all of computer science. The major
application areas of computer science include operating systems, compiler
design, data structures and algorithms, graphics, numerical analysis, data-
bases, programming languages, artificial intelligence, machine learning,
and software engineering. As a computer science student, you will be
required to take courses in many or all of these areas.

Most applied sciences require their practitioners to express their
ideas in one or more technical languages. Chemists learn the language of
chemical symbols and the operators and connectors that allow chemical
equations to be written. Physicists use the language of calculus, differen-
tial equations, and other advanced mathematics to express their models
and their ideas. Electrical engineers learn the language of circuit diagrams.
Computer scientists also use a variety of notations and languages to
express their concepts and produce their results.

A physics student must first learn some basic mathematics in order to
have a notation that can be used for discussion and reasoning about phys-
ics. A computer science student needs to learn a high-level programming
language and problem solving techniques in order to be able to reason
about computation. Programming no more defines what a computer sci-
entist does than calculus defines what a physicist does.

Computer scientists, like their natural science and engineering col-
leagues, are concerned with model building, abstractions, analysis,
design, and implementation. A program or software system often repre-
sents the final step in a reasoning and problem solving process.

This book will introduce techniques for reasoning and problem solv-
ing using objects. The fundamental principles of object-oriented program-
ming will be explored and introduced. Through this exploration, many
important principles of computation will be revealed.

1.2

1.3

PROGRAMMING AND SOFTWARE

Computer programs

A program consists of a sequence of instructions written in a pre-
cisely defined language called a programming language. These instruc-
tions are translated by a compiler into a low-level language, machine
language, that the computer can respond to.

Software applications are generally divided into two broad catego-
ries: systems programs and applications programs. System programs are
aimed at controlling a computer component such as a storage device, out-
put device, or the computer itself (e.g., operating system). Application
programs solve a specific problem external to the computer such as a
banking application, air-traffic control system, word processing system,
spreadsheet, or some other application area.

Computer programs represent the end product of the software devel-
opment process. They are tangible entities that can be delivered to a cus-
tomer, billed for, and shrink-wrapped. Commercial programs usually
come packaged with a User’s Guide and other supporting written docu-
mentation.

Programming languages

Three broad categories of programming languages have been devel-
oped: machine languages, assembly languages, and high-level languages.
The earliest computers could be programmed using only a machine lan-
guage. Such a language uses a sequence of 0’s and 1’s (bits) that represent
precise instructions for computation and data access.

Assembly languages use alphabetic characters (letters) to represent
the bit configurations in machine language. The letters usually describe
the operations to be performed. Assembly languages represent a higher
level of abstraction than a machine language. Some modern assembly lan-
guages support control structures that were previously found only in
high-level languages.

High-level languages resemble natural languages. Data and opera-
tions are represented by descriptive statements.

As an example, suppose we wish to add two numbers and deposit
the sum in a third number. In many high-level languages this operation
would be symbolized:

c:=a+b

