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PREFACE

In August 1999 a meeting was held at Stanford University on the subject of
“Topology, Geometry and Algebra: Interactions and New Directions”. The goal
of the conference was to bring together distinguished researchers from a variety of
areas related to algebraic topology and its applications. The list of invited speakers
included: Greg Arone, Sylvain Cappell, Jon Carlson, Fred Cohen, Jim Davis, Don
Davis, Tom Goodwillie, Yakov Eliashberg, Tom Farrell, Mike Hopkins, Eleny Ionel,
Ronnie Lee, Ib Madsen, Mark Mahowald, Bob Oliver, Peter Oszvath, John Rognes,
Abigail Thompson, Ulrike Tillmann and Efim Zelmanov.

A number of topics were covered in the lectures, including homotopy theory,
moduli spaces, group cchomology, manifold theory, algebraic K-theory, low dimen-
sional topology, symplectic geometry, etc. Special emphasis was made on breadth
and interactions between different areas. A large number of postdocs, graduate
students and established mathematicians attended the lectures. This volume con-
tains twelve refereed papers on a wide variety of topics reflecting the nature of the
conference.

The conference was partly held to celebrate Jim Milgram’s sixtieth birthday
and to recognize his enormous contributions to algebraic topology over the past
35 years. His powerful mathematics, deep insight and breadth of knowledge have
been an inspiration to many of us, and it is a great pleasure for us to dedicate this
volume to him. The first paper in this volume is an outline of Jim Milgram’s main
mathematical contributions.

Acknowledgements: We would like to thank the National Science Foundation
as well as Stanford University for their generous financial support. We would like to

thank Willene Perez for her valuable help in organizing the conference, and Diane
Reppert for her excellent technical assistance in assembling this volume.

Alejandro Adem
Gunnar Carlsson
Ralph Cohen
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On Jim Milgram’s Mathematical Work

Gunnar Carlsson

Jim Milgram has been one of the leading figures in algebraic topology over the
last 35 years. He has contributed to all parts of the subject, and his work has been
characterized by tremendous depth and an unsurpassed calculational power. His
influence will continue to be felt throughout algebraic topeology for the foreseeable
future. Personally, I was one of Jim’s earlier Ph.D. students. He was a superb
advisor, combining the right amount of help in crucial situations with an insistence
on independence. In particular, he communicated his mathematical taste, which
includes an emphasis on concrete problems and computations, very effectively. I
am very grateful to him for all his work with me during my student days, as well
as for his friendship since them. In this note I will attempt to summarize the high
points of Jim's work. The description 1 will give will not be exhaustive, and it is
colored by my own biases and interests.

I. Iterated Loop Spaces

In the mid 1950’s, I. M. James [J] had constructed the combinatorial model
for the loop space of a suspension which carries his name. Many mathematicians
(including Kudo-Araki [K-A], Browder [B1], and Dyer-Lashof [D-1] ) had extended
this work by studying the homology of iterated loop spaces of iterated suspensions.
All this work was aimed at homology computations, though, and did not carry
through a full extension of James’ work to produce a geometric model. In his
dissertation, written under the supervision of E. Calabi, Jim had carried out a
detailed study of the homology of symmetric products. Motivated in part by this
dissertation work, Jim set himself the task of constructing full geometric analogues
for James’ models in the case of iterated loop spaces. He succeeded completely,
using extremely clever combinatorial constructions, and as a consequence succeeded
in describing H,(Q*¥*X, Z/pZ) as a functor of H.(X,Z/pZ). This piece of work
was a fundamental advance in homotopy theory, and it is of a great deal of use to
this day.

This work supported in part by a grant from the National Science Foundation.

© 2001 American Mathematical Society



2 GUNNAR CARLSSON

II. Spherical Fibration Theory

It has been well know since the work of Steenrod that vector bundles over a
fixed base space can be classified by maps to a classifying space BO(n), which
is constructed as a direct limit of Grassmannian manifolds of n-planes in high
dimensional Euclidean spaces. This statement means that isomorphism classes of
vector bundles over a base space X can be identified with [X, BO(n)], the collection
of homotopy classes of maps from X to BO(n), and that the correspondence goes via
f — [ &, where &, is a certain universal bundle over BO(n). The cohomology ring
of BO(n) becomes and important object in bundle classification, since homotopy
classes of maps can often be distinguished by their behavior on cohomology. For
this reason, cohomology classes in BO(n) and other classifying spaces are referred
to as characteristic classes, since their pullbacks to the cohomology of the base
space will be characteristic invariants of the bundle.

For many purposes, though, one is interested in classifying not vector bundles,
but rather spherical fibrations. A spherical fibration is a fibration, whose fiber has
the homotopy type of a sphere. Stashefl [St] showed that by analogy with the case
of vector bundles, one can construct classifying spaces BG,, which classify fibrations
whose fiber has the homotopy type of the n-sphere. One can also pass to a limit
over n to get a space BG which classifies stable spherical fibrations. Jim became
interested in studying the characteristic classes for spherical fibrations, i.e. the
cohomology of the space BG. He succeeded completely in obtaining a description
of the mod-2 cohomology ring of all the spaces BG,, [M3]. In order to do this, he
first had to study the homology algebra of the space G,, of self equivalences of the
n-sphere. This he carried out using his earlier work on the structure of iterated loop
spaces. This calculation was then input to an Eilenberg Moore spectral sequence,
which he was able to analyze. The end result is that the cohomology ring may be
described as

H*(BG,Z/2Z) > H*(BO,Z/2Z) ® Aleg;i € 1)
where the left hand tensor factor denotes the cohomology ring of the union of all
the classifying spaces BO(n) and the right hand side denotes an exterior algebra
on an infinite set of generators parametrized by a set 1.

ITI. Manifold Classification and Bordism

In the mid 1950’s R. Thom [Th] defined the bordism groups of smooth unori-
ented manifolds. Two smooth n-manifolds M and N are said to be bordant if there
is a smooth n + 1 dimensional manifold with boundary W whose boundary is the
disjoint union of M and N. This gives an equivalence relation on the collection of
all smooth manifolds. Further, the equivalences form an abelian group denoted €,
since one may use the disjoint union operation to add bordism classes of manifolds.
Thom asked what the structure of these groups were, and provided an answer via
the well-known Pontrjagin- Thom construction. He showed that the bordism groups
could be identified with homotopy groups of Thom complezes of vector bundles, so
that the seemingly unapproachable problem of manifold classification up to bordism
was reduced to a more concrete question in homotopy theory. Thom then went on
to carry out the homotopy theoretic analysis of these Thom complexes, and found
an explicit answer for the unoriented bordism groups. The key ingredient was an
observation that the cohomology groups of the Thom complexes behaved like free
modules over the Steenrod algebra.
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In the late 1950’s and early 1960s, topologists began the study of bordism
of smooth manifolds with additional structure. For instance, one can ask for the
classification of oriented manifolds, almost complex manifolds, spin manifolds, etc.,
up to a bordism W carrying the same structure. These cases were carried out:
Wall computed the oriented bordism groups [W1], Milnor the almost complex case
[Mi2], and Anderson-Brown-Petersen the spin case [A-B-P]. There are many other
possible structures, and much work has gone into their analysis. The method is
always to study the homotopy type of a Thom complex of a vector bundle over a
classifying space.

By the late 1960’s, topologists were becoming interested in studying bordism of
manifolds which weren’t necessarily smooth. In the earlier work, smoothness was
a key ingredient, since the Pontrjagin-Thom construction required the presence of
a normal bundle to an embedding as well as a good transversality theory. So,
the study of topological manifolds and piecewise linear (PL) manifolds required
the development of a theory of normal bundles. This was carried out by Rourke-
Sanderson ([R-S1],[R-S2], and [R-S3]) and Milnor [Mi3]. Their work permitted the
reduction of topological and PL bordism groups to the homotopy theory of Thom
complexes of generalized “bundles” over classifying spaces BTop and BPL.

The homotopy theoretic analysis of these Thom complexes was carried out by
Brumfiel-Madsen-Milgram, at the prime 2 [B-M-M]. They completed a 2-step pro-
gram, the first step being the analysis of the cohomology rings H*(BTop, Z/2Z) and
H*(BPL,Z/2Z), and the second being the computation of the homotopy groups
from this information, using the Thom isomorphism. It turns out that the first
step was in this case almost the whole story, that the computation of the homotopy
groups from the cohomology was almost immediate. The difficult portion was the
computation of the cohomology rings. This was carried out using the two fibrations

G/Top — BTop — BG

and
G/PL — BPL — BG

G/Top and G/PL were studied by Sullivan [Su], and BG had been studied by
Milgram [M3], as we saw above. Sullivan had found that G /Top and G/PL could
be described as products of simple spaces, either Eilenberg-MacLane spaces or
two stage Postnikov systems. The end result was the complete description of the
topological and piecewise linear unoriented bordismn. Madsen and Milgram carried
this work further to obtain the oriented versions of these results [MaMil].

IV. Surgery

Surgery theory is a method developed by Browder [B2] and Novikov [N] in the
simply connected case, and by Wall [W2] in the non-simply connected case, for
constructing and classifying manifold structures on a topological space. It has been
extremely successful in addressing a number of interesting geometric problems. Jim
has done a great deal of work in this area, and we will first summarize the method.

The question we are asking about a topological space is if it has the homotopy
type of a compact manifold without boundary, and if so to classify the distinct such
manifolds, where manifolds with the given homotopy type are distinct if they are
not homeomorphic. The first observation is that because of the Poincaré Duality
Theorem, the cohomology ring of a space which has the homotopy type of a closed
manifold must satisfy the Poincaré duality. Such spaces are referred to as Poincaré
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duality spaces. It turns out that although Poincaré duality spaces do not come with
a tangent bundle, they do have a Spivak normal fibration (see [Sp]). The Spivak
normal fibration is a stable class of spherical fibrations, in other words it gives a
homotopy class of maps from the space in question to the classifying space BG
described above. If the space is known to be a smooth manifold, then the Spivak
normal fibration can be identified with the unit sphere bundle in the normal bundle
to a smooth embedding of the manifold in Euclidean space. This means that for a
Poincaré duality space to be the underlying space of a smooth manifold, there must
be a reduction of the Spivak spherical fibration to a vector bundle. This means that
in the diagram

BO

x s pg

there must be a lift of the classifying map to BO. This is a real restriction, which
fails for many Poincaré duality spaces, as can be verified using Jim Milgram’s com-
putation of H*(BG). Supposing that we have such a reduction, we can construct
one of the objects which surgery theory deals with, a degree one normal map. A
degree one normal map is a map f : M — X from a smooth manifold M to
X, which induces an isomorphism on cohomology in the top non-zero dimension,
together with a vector bundle £ over X, and a stable isomorphism of vector bundles
from vy, the stable normal bundle of M, to the pullback bundle f*£. The question
asked by surgery theory is whether a degree one normal map can be modified (using
surgeries) to one which is a homotopy equivalence. Surgeries are handle addition
operations performed to M, in such a way that the map f and the bundle isomor-
phisms may be extended over the handles. The result of a surgery is a new degree
one normal map, which is normally bordant to the original map, in the sense that
there is an (n + 1)-dimensional manifold W with boundary, with a map to X, and
with an identification of the stable normal bundle to W with the pullback of £, so
that the boundary of W is the disjoint union of the two domain manifolds, and so
that the restriction of the “bundle data” is compatible with the bundle data on the
two pieces. Browder and Novikov arrived at very explicit answers concerning when
a degree one normal map may be modified by surgeries to one which is a homotopy
equivalence. They showed the following in the simply connected case.

1. For any degree one normal map involving manifolds and Poincaré duality
spaces of odd dimension greater than or equal to 5, one can always modify
the map by surgeries to obtain a homotopy equivalence.

2. If the dimension n is a multiple of 4, and greater than or equal to 5, a degree
one normal map can be modified by surgeries to a homotopy equivalence if
and only if the difference signature(X) — signature(M) is equal to zero.
(Poincaré duality spaces have signatures just as manifolds do, since they
have a non-singular middle dimensional form)

3. If n is of the form 4k + 2, and is greater than or equal to 5, then there is
a Z/2Z-valued obstruction, referred to as the Kervaire invariant, so that
the degree one normal map can be modified by surgeries to a homotopy
equivalence if and only if this obstruction vanishes.

C. T. C. Wall in [W2] constructed a similar theory for non-simply connected
manifolds. He showed that there are 4-periodic obstruction groups L, (m(X)),
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depending only on the fundamental group m; (X), so that for a degree one normal
map of dimension greater than or equal to 5, that map may be modified to a
homotopy equivalence if and only if an obstruction in the appropriate obstruction
group vanishes.

Here are some of Jim’s contributions to this area.

1. Calculations with Brumfiel and Madsen [Ma-Mi2] which provide understand-
ing of the homological behavior of spaces which play a key role in manifold
classification. This includes the work on BG, BTop, and BPL, as well as
the spaces G/PL and G/TOP.

2. Calculations of L-groups, joint with Hambleton [H-M1], [H-M2] and Carlsson
[Ca-M].

3. Work with Hambleton, Taylor, and Williams [H-M-T-W] on the “oozing
conjecture”, which provides severe restrictions on which surgery obstructions
can actually appear on degree one normal maps involving closed manifolds.

4. Applications of surgery and algebraic K-theory to the study of the “topo-
logical space form problem”, which we will now discuss in more detail.

V. The Topological Space Form Problem

This problem is a particularly beautiful application of non-simply connected
surgery theory, to which Jim has made very important contributions. This problem
had its origins in the 19th century. The question that was formulated and solved
then was, “which finite groups G act freely and linearly on a sphere”. A linear
action on a sphere is the restriction of a representation to the unit sphere in the
representation space under a group invariant inner product. An equivalent problem
is to ask, “which finite groups G occur as the fundamental groups of manifolds with
constant positive curvature?”. Representation theory allows us to give an explicit
answer to this question. The following two conditions are necessary and sufficient.

1. All abelian subgroups of G are cyclic. This follows easily since non-cyclic
abelian groups admit no free linear actions on spheres, as is easily verified
using the character tables.

2. For any two distinct primes p and ¢, all subgroups of order pg are cyclic.
This means that no non-trivial semidirect products of Z/pZ and Z/qZ occur.
This is also relatively easy to check, using the character tables of the various
non-trivial semidirect products. These conditions are referred to as the pg-
conditions.

That these conditions are necessary is not hard to check, as we have seen, but
the proof that they are also necessary requires a long argument which effectively
classifies all groups satisfying these conditions.

C. T. C. Wall [W2] proposed that we remove the linearity requirement on
the group action on the sphere, or equivalently that we remove any condition on
curvature on the orbit manifold and instead simply require that the universal cover
is topologically a sphere. Explicitly, the topological space form problem asks, “which
finite groups G act freely on the n-sphere?”.

The first thing to find out in attacking this question is how many of the nec-
essary conditions which hold in the linear case continue to hold in the topological
problem. The first condition, that all abelian subgroups must be cyclic, continues
to hold. This is relatively easy to check, since a spectral sequence argument shows
that for groups G which act freely on spheres, the cohomology ring H* (7, Z) must
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be periodic, i.e. that for some d, there are isomorphisms H*(G,Z) =~ H*t4(G, Z)
for all £ > 0. Since the cohomology rings of all abelian groups are known explicitly,
we can readily check that this condition doesn’t hold unless the group is cyclic. R.
G. Swan [Sw] showed that this condition on the abelian subgroups is sufficient to
guarantee the existence of a free action of G on a finite CW-complex X having
the homotopy type of a sphere. From the point of view of non-simply connected
surgery theory, the orbit space X/G is now a Poincaré Duality space, to which we
can apply the techniques of surgery. As for the pg-conditions, they do not hold
in general, as was observed by T. Petrie [P] who produced (using surgery theory)
free actions of non-trivial semidirect products of order pg on spheres. Milnor [Mil]
proved, though, that all the 2p-conditions hold, i.e. that subgroups of order 2p,
where p is an odd prime, must be cyclic.

I. Madsen, C. B. Thomas, and C. T. C. Wall ([Ma-T-W1],[Ma-T-W2]) showed
that the conditions on abelian subgroups being cyclic, together with the 2p-conditions
for all odd primes p, imply that there is a free action of G on a sphere. This theorem
is one of the important achievements of surgery theory. However, it leaves open the
question about which spheres G acts on. In many cases they show that G does in
fact act on S%, where d is the smallest period for the cohomology, but they are not
able to resolve this question in general. Here, a more delicate analysis is required.

To describe this analysis, we first have to return to the theorem of Swan,
which says that for G with only cyclic abelian subgroups, there is a finite CW-
complex on which G acts. From the spectral sequence analysis and arguments
about periodic cohomology, it is clear that the dimension of the sphere must be of
the form dk—1, where d is the period in the cohomology, and where k is an arbitrary
positive integer. However, the complex which Swan constructs cannot always be
made d-dimensional. There is always a complex X (perhaps not finite) which has
the homotopy type of S9, so that the orbit complex has finite cohomology (and
hence locks cohomologically like a finite complex), but it can’t necessarily be made
homotopy equivalent to a finite complex. There is a Wall finiteness obstruction
{depending on the choice of complex X) in the algebraic K-group Ky(Z|G]) which
must vanish if X is to have the homotopy type of a finite complex.

Jim ([M4],[Da-M]) showed that there are indeed situations in which G cannot
act in the period dimension d, as a result of the fact that X cannot be chosen with
vanishing finiteness obstruction. He showed that among the groups @(8a,b,c),
there are values of a,b, and ¢ for which the finiteness obstruction cannot be made
to vanish, and so that these groups do not act in the period dimension. Q(8a,b,c)
is a group which fits into an extension

1-—C —Q8abc)—Q —1

where @ is a generalizes quaternion subgroup of SU(2). He also showed that there
are values of a, b, and ¢ where the work of Madsen-Thomas-Wall does not guarantee
an action in the period, but where an analysis of the finiteness obstruction will
show that an action exists. This has shown the subtlety of the question, and Jim
has shown how to perform the analysis of these delicate invariants. Jim (and Ib
Madsen, independently) have also shown that even in situations where the finiteness
obstruction does not preclude the existence of an action in the period dimension, the
surgery obstruction may be non-zero, and so that an action in the period dimension
will not exist.
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VI. Atiyah Jones Conjecture

In the late 1970’s, M. F. Atiyah and J. D. S. Jones [A-J] studied the moduli
space solutions to the Yang-Mills equations on the space of connections on principal
SU(2)-bundles on S*. These solutions are named instantons, for reasons arising in
physics. For each value of a positive integer d there is a principal SU(2) bundle
&4 with Chern class d, and we can consider the moduli space My of solutions to
the self-duality equations on the space of connections on this bundle. We can also
consider the space Cy of gauge equivalence classes of all connections on §g, and we
have the evident inclusion ig : My — Cy4. Atiyah and Jones found that there is
an integer valued function N(d) so that the induced map H,(iq) is surjective for
* < N(d), and they went on to conjecture that H,(ig) is in fact an isomorphism
for * less than some function N(d).

Taubes [Ta] and Gravesen [G] proved a result in this direction. They observed
that the spaces My fit together into a directed system

> ]\fd — ]\/—,d+1 — ]\’fd+2 —
and that we therefore obtain a map on the direct limits
lim My — 1lim Cy.

They showed that this map is a homotopy equivalence. Their result is only a result
about the limits, though, it does not show that this ever induces an isomorphism
on homotopy groups for any particular value of d.

Jim, in collaboration with C. Boyer, J. Hurtubise, and B. Mann, was able to
prove the conjecture of Atiyah-Jones, with N(d) = L%J —2 [B-H-M-M]. The method
used the work of Taubes-Gravesen to reduce the result to a stability argument for
the maps My — My.,. The corresponding stability statement for the spaces Cy
is immediate, since we have equivalences Cy = 9‘353, where the subscript denotes
“degree d component”, and the inclusions Cy — Cy41 are given by loop sum with
a degree one map. This conjecture had been the subject of intense work for a
number of years, and its solution is one of the big achievements in the subject over
the last 20 years.

VI11. Cohomology of Simple Groups

Jim has had a large impact on the area of mathematics centered around the
cohomology of finite groups. From his early days he acquired a hands-on knowledge
of the cohomology of symmetric products (his thesis topic) and later the cohomology
of infinite loop spaces. Along the way he developed a unique geometric insight into
the cohomology of the symmetric and alternating groups, connecting Nakaoka’s
celebrated work with loop space techniques and invariant theory. Jim was able
to use these methods to devise a method for computing the mod 2 cohomology
of the finite symmetric groups. These computations and the detection arguments
implemented by Jim were very influential for Quillen’s subsequent ground-breaking
work on group cohomology and the Adams conjecture.

Many years later (around 1988), Jim returned to his interests in finite group
cohomology and he became an important catalyst for extensive ongoing interactions
between algebraists and topologists. In a series of papers (many of them joint with
A. Adem), Jim outlined an approach for computing the mod 2 cohomology of many
of the low-rank sporadic simple groups ([A-K-M-U], [A-M-M1], [A-M-M2], [A-M1],
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[A-M3], [A-M4], [A-M5], [A-M6], [Ca-M-M], [M5], [M6], [M7]) . Along the way these
examples have provided testing grounds for a number of theorems and conjectures.
These calculations have radically altered the nature of research in this area.

As a result of this research, Adem and Milgram published the Springer-Verlag
Grundlehren text Cohomology of Finite Groups, [A-M2] which will be a standard
reference in the subject for many years to come.

VIII. Mathematics Education

Over the last few years, Jim has in addition to his research work become in-
terested in elementary and secondary mathematics education. He has been instru-
mental in the introduction of Content Standards in California, as well as in the
development of a Framework for their implementation. In addition, he continues to
play a important role as an advisor to the state of California on mathematics edu-
cation, and he plays a leading role in the textbook adoption process in California.
This work has had profound consequences for millions of children in California as
well as throughout the country.
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A renormalized Riemann-Roch formula and the Thom
isomorphism for the free loop space

Matthew Ando and Jack Morava

ABSTRACT. Let E be a circle-equivariant complex-orientable cohomology the-
ory. We show that the fixed-point formula applied to the free loop space of a
manifold X can be understood as a Riemann-Roch formula for the quotient
of the formal group of E by a free cyclic subgroup. The quotient is not repre-
sentable, but (locally at p) its p-torsion subgroup is, by a p-divisible group of
height one greater than the formal group of E.

I believe in the fundamental interconnectedness of all things.
—Dirk Gently [Ada88]

1. Introduction

Let T denote the circle group, and, if X is a compact smooth manifold, let

cx & C>=(T, X) denote its free loop space. The group T acts on £X, and the

fixed point manifold is again X, considered as the subspace of constant loops. In
the 1980’s, Witten showed that the fixed-point formula in ordinary equivariant
cohomology, applied to the free loop space £X of a spin manifold X, yields the
index of the Dirac operator (i.e. the A—genus) of X—a fundamentally K-theoretic
quantity [Ati85]. He also applied the fixed-point theorem in equivariant K-theory
to a Dirac-like operator on LX to obtain the elliptic genus and “Witten genus” of
X [Wit88]—quantities associated with elliptic cohomology.

Among homotopy theorists, these developments generated considerable excite-
ment. The chromatic program organizes the structure of finite stable homotopy
types, locally at a prime p, into layers indexed by nonnegative integers. The
nth layer is detected by a family of cohomology theories &,; rational cohomol-
ogy, K-theory, and elliptic cohomology are detecting theories for the first three
layers [Mor85, DHS88, HS98|.
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The geometry and analysis related to rational cohomology and K-theory are
reasonably well-understood, but for n > 2 and for elliptic cohomology in particular,
very little is known. Witten’s work provides a major suggestion: for n = 1 and
n = 2 his analysis gives a correspondence

analysis underlying &, - analysis underlying &, -1 (1.1)
applied to X applied to £X. ’

This paper represents our attempt to understand why Witten’s procedure ap-
pears to connect the chromatic layers in the manner of (1.1). To do this we consider
very generally the fixed-point formula attached to a complex-oriented theory F with
formal group law F. We recall that for n > 0, such a theory detects chromatic layer
n if the formal group law F' has height n.

Our first result is that the fixed-point formula of a suitable equivariant extension
of E (Borel cohomology is fine, as is the usual equivariant K-theory) applied to the
free loop space yields a formula which is identical to the Riemann-Roch formula for
the quotient F'/(4) of the formal group law F by a free cyclic subgroup (§) (compare
formulae (3.4) and (4.5)).

The quotient F'/(§) is not a formal group, so to understand its structure, we
work p-locally and study its p-torsion subgroup F/(§)[p>°]. We construct a group
Tate(F') with a canonical map

Tate(F) — F/(9),

which induces an isomorphism of torsion subgroups in a suitable setting. Our
second result is that the group Tate(F)[p>] is a p-divisible group, fitting into an
extension

F[p™) - Tate(F) — Qy/Z,

of p-divisible groups. If the height of F is n, then the height of Tate(F)[p™] is
n + 1, but its étale quotient has height 1. In a sense we make precise in §5.3, it is
the universal such extension.

Thus the fixed-point formula on the free loop space interpolates between the
chromatic layers in the same way that p-divisible groups of height n + 1 with étale
quotient of height 1 interpolate between formal groups of height n and formal groups
of height n+ 1. This is discussed in more detail, from the homotopy-theoretic point
of view, in our earlier paper [AMS98] with Hal Sadofsky; this paper is a kind of
continuation, concerned with analytic aspects of these phenomena. We show that
Witten’s construction in rational cohomology produces K-theoretic genera because
of the exponential exact sequence

0->Z—->C-C*—1 (1.2)

expressing the multiplicative group (K-theory) as the quotient of the additive group
(ordinary cohomology) by a free cyclic subgroup; while his work in K-theory pro-
duces elliptic genera because of the exact sequence

0—¢->C* -C*/¢% -1 (1.3)

(where ¢ is a complex number with |q] < 1), expressing the Tate elliptic curve
C* /g% as the quotient of the multiplicative group by a free cyclic subgroup.
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These analytic quotients have already been put to good use in equivariant
topology. Grojnowski constructs from equivariant ordinary cohomology a complex
T-equivariant elliptic cohomology using the elliptic curve €/A which is the quo-
tient of the complex plane by a lattice; and Rosu uses Grojnowski’s functor to
give a striking conceptual proof of the rigidity of the elliptic genus. Grojnowski’s
ideas applied to the multiplicative sequence (1.3) give a construction of complex
T-equivariant elliptic cohomology based on equivariant K-theory; details will ap-
pear elsewhere. Completing this circle, Rosu has used the quotient (1.2) to give a
construction of complex equivariant K-theory [Gro94, Ros99, RK99].

Several of the formulae in this paper involve formal infinite products; see for
example (3.4) and (4.5). On the fixed-point formula side, the source of these is the
Euler class of the normal bundle v of X in £X (3.2). From this point of view, the
problem is that the bundle v is infinite-dimensional, so it does not have a Thom
spectrum in the usual sense. However, v has a highly nontrivial circle action, which
defines a locally finite-dimensional filtration by eigenspaces. Following the program
sketched in [CJS95], we construct from this filtration a Thom pro-spectrum, whose
Thom class is the infinite product.

In the particular cases of the additive and multiplicative formal groups (n = 1,2
above), one can also control the infinite products by replacing them with products
which converge to holomorphic functions on C; this construction of elliptic functions
goes back to Eisenstein. We are grateful to Kapranov for pointing out to us that
Eistenstein considered the the analogous problem for n > 2. In [Eis44] he described
the difficulty of interpreting such infinite products. He went on to hint that he
perceived a useful approach, and concluded the following.

Die Functionen, zu welchen man auf diesen Wege gefiihrt wird, scheinen
sehr merkwiirdige Eigenschaften zu besitzen; sie er6ffnen ein Feld, auf
dem sich Stoff zu den reichhaltigsten Untersuchungen darbietet, und
welches der eigentliche Grund und Boden zu sein scheint, auf welchem
die schwierigsten Theile der Analysis und Zahlentheorie ineinander
greifen.

1.1. Formal group schemes. In this paper (especially in section 5) we shall
consider formal schemes in the sense of [Str99, Dem72|. A formal scheme is a
filtered colimit of affine schemes. For example the “formal line”

A" &' colim spec VARIVEAS
n

is a formal scheme. Note that an affine scheme is a formal scheme in a trivial
way. An important feature of this category which we shall use is that it has finite
products. For example,

Al x Al = colimspec(Z[z]/(z™) ® Z[y)/(y™)).

In particular a formal group scheme means an abelian group in the category of
formal schemes. A formal group scheme whose underlying formal scheme is isomor-
phic to the formal scheme Al is called a commutative one-dimensional formal Lie
group. We shall simply call it a formal group.



