


Pascal
from

BASIC

PETER BROWN

A
v

ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts « Menlo Park, California
London « Amsterdam  Don Mills, Ontario ¢ Sydney




This book is in the
#y Addison-Wesley Microbooks
' Popular Series

© 1982 by Addison-Wesley Publishing Company, Inc.
Philippines copyright © 1982 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without prior
¥ written permission of the publisher. Published simultaneously in Canada.

., Library of Congress Catalog Card No. 82-70384.

Composition in Times by Filmtype Services Limited,
Scarborough, North Yorkshire.

Printed in Finland by Werner Séderstrdm Osakeyhti, Member of Finnprint 1982.

ISBN 0-201-10158-0

ABCDEFGHIJ-898765432



To my wife who nagged me to finish; -
my girlfriend who kept me cheerful;
my colleague who criticized;
my boss who understands me all too well.

To the one person who is all of these.

i The publishers wish to thank Dave Farris for the cartoon illustrations.

hﬂ.‘m.ﬁ.-.. g



Preface

VISITOR:  Can you tell me the way to the Post Office?
LOCAL: If I was going to the Post Office I wouldn’t start from here.




This book assumes that you are a reasonably competent BASIC programmer
and that you want to learn Pascal. Most Pascal books are written as if the reader
does not know how to program. Your problem is quite different, however, from
that of the novice. You do not want explanations of basic concepts such as
variables, loops and so on, but you do want help in adjusting your manner of
thinking from BASIC to Pascal. In fact your task is probably harder than that
of the novice, because BASIC is actually a maverick among programming lan-
guages — though it has become the world’s most popular language in spite of
(because of ?) this. It is harder to learn concepts and then to relearn them in a new
way, than to start from scratch. Make no mistake, switching from BASIC to
Pascal does mean a radical change. If you write your Pascal programs in the same
way as your BASIC programs you will be like an English-speaking tourist in
France translating your sentences word for word from a dictionary.

This book is aimed specifically to help you conquer the problems that
BASIC programmers have with Pascal, and to adapt your programming style
accordingly. It is not assumed that you are forsaking your old friend BASIC
entirely. Instead the book is quite critical of some aspects of Pascal, and tries to
make clear to you where Pascal gains and where it loses.

The book also aims to be light, and fun to read. The goal is to be serious
without being solemn and stodgy. Concepts are introduced almost entirely in
terms of examples, and, where relevant, these are related to BASIC. If you prefer
a more formal approach, look elsewhere.

When you read this book you should gain two capabilities. You should be
able to write good Pascal programs, and to read Pascal reference manuals and
appreciate what they are all about.

The book is strenuously neutral towards competing versions of Pascal: with
absolute fairness, it does not mention any of them. Fortunately, different Pascal
systems are much more similar than are BASIC systems, so it is possible to give
a detailed discussion without commitment to a particular implementation. Thus
it is immaterial whether you are planning to use Pascal on a personal computer
or on a large time-shared mainframe computer.

Acknowledgements

I would like to thank Laurence Atkinson who, by his enthusiasm, unknowingly
inspired me to write this book. Thanks are also due to Tony Hoare for valuable
guidance and to several of my colleagues, including Stephen Binns, David Turner
and, most especially, Peter Welch. A kind and friendly Pascal system provided
the layout of the programs shown in this book.

Finally let me record my gratitude to two of the world’s greatest. Marianne
Kong typed the manuscript with amazing care and conscientiousness, and put
up nobly with all my changes. Heather Brown spent as many hours in checking
and criticizing as I did in writing. Her caustic comments and her savage con-
demnations annihilated the worst parts of the book before they reached print.

Canterbury Peter Brown
October 1981



Contents

Chapter 1 An example to show the fundamentals

An example
Declarations

The program
Individual statements
Line-numbers
Summary

Some friends

Chapter 2 The aims of Pascal

History

Specific design features
Definition of Pascal

Variations in BASIC and Pascal
Portability

Method of implementation

A few practical considerations
Language issues

Maintenance

Levels of readability

Making statements easy to read
Structuring

Relating to the problem
Imposing a discipline
Separating out parts that may need change
Errors

Evaluation

Humans and discipline
Changing the way you think

Chapter 3 Operating systems and editors

Microcomputers and mainframe computers
Interactive and batch languages

Preparing a Pascal program

Operating systems

Filing systems

Command languages

Levels of communication

Miscellany

Editors

OO~ WUNWN =—



IV CONTENTS
Chapter 3 Operating systems and editors—continued

Features of editors
Editing commands
Improved displays

Using a Pascal compiler
Running a Pascal program
Debuggers

Special cases

An expert opinion

Chapter 4 Translation of BASIC concepts

Spacing and comments

Names

Data types

Subrange types

Declarations

Built-in functions

Constants

Expressions

IF statements

Backwards jumps

GOTO statements

FOR statements

Sounds, pictures

ON statements

BASIC statements with no Pascal equivalents
Constants, types and declarations

Chapter 5 Subroutines and functions

Basic concepts

Arguments and parameters
Points to note

The workings of the function
Procedures

Built-in procedures

Local declarations

Stepwise refinement

Local scope

Storage for variables

Differences from permanent allocation
Adapting to block-structure
Non-local variables

Recursion

Local variables and recursion
Forward reference

Changing the value of arguments
Routines as parameters

Building blocks

Tools



CONTENTS v
Chapter 6 More on simple data types 7
Kinds of type 72
Boolean data 72
Character data 74
Operations on simple types 75
Ordered sets of values 76
The control of loops 77
Chapter 7 Arrays and strings 79
Basic concepts 80
Loops with arrays 81
An aside on error detection 82
Declaring index types 82
MAT statements 84
Arrays of arrays 85
An example 86
Bad news 88
An example of an array parameter 88
Packed arrays 89
Strings in BASIC 90
Strings in Pascal 91
Surmounting the restrictions 92
Chapter 8 Records ' 95
Declaring a record 96
Structured types 96
Data structuring 97
Facilities for nesting 98
An alternative view . 99
An example 100
Abstractions 101
The with statement 102
Variant records 103
Advantages of variants 105
An alternative form of variants 105
Name equivalence 106
Chapter 9 Input and output 107
Categories of file 108
Data types on input/output 109
External file names 110
External and actual correspondence 111
Characteristics of files in Pascal 112
The get and put procedures 112
Initializing files 114
The eof function 114
Files as parameters 115
Operations on files 117
Files and arrays 117

Special properties of textfiles 117



VI CONTENTS
Chapter 9 Input and output—continued

The writeln and readin procedures
End-of-file on textfiles
Interactive input/output
Interactive testing for end-of-file
Output formats

Fraction length

Further points

Imprisoned data types

Graphics

Summary

Chapter 10 Sets

Introduction to sets

An example of a set

Operations on sets

Relational operations on sets
Expressions within set constructors
A complete example with characters
A second complete example
Disparate sets

Restrictions on sets

Other operations on sets

Chapter 11 Dynamic storage

Deficiencies of block-structured storage
An analogous problem

The heap

Using dynamic storage

Pointers

Data type of dynamic storage
Borrowing and freeing

Referencing dynamic variables
Intermediate summary

Linked dynamic variables

Style of programming

Sample list processing procedures
Printing a list

Adding to a list

Deleting from a list

Extra pointers

Summary on uses of dynamic storage

Chapter 12 Libraries

Source and object code libraries
Object code libraries with security
Libraries in other languages

The CHAIN statement

Source code libraries

119
120
121
123
124
125
126
127
128
128

129
130
130
131
132
133
133
134
135
135
136

137
138
139
139
140
140
140
141
142
144

146
147
147
148
151
153
154

155
156
157
157
158
158



Chapter 13 Summing up
The balance
Adapting the style
Effort in program preparation
Extending
Final words

References

Appendix A Built-in procedures and functions
Procedures
Functions

Appendix B Summary of Pascal

Appendix C Syntax diagrams

Explanation
Limitations

CONTENTS vii
159

160
162
162
162

163
164
164
165
166
170

170
171



CHAPTER 1

An example to show
the fundamentals

begin at the beginning.

DYLAN THOMAS




2 PASCAL FROM BASIC

An example

To get a feel for the task in hand, we shall start with a very simple BASIC
program and show its Pascal equivalent. The program takes as data a number
N, which is followed by N further numbers. All the program does is to print the
average of the numbers. In BASIC the program can be written

10 REM -—-FINDS THE AVERAGE OF N NUMBERS---
100 INPUT N

110 LET S=0

120 FORK=1TO N

130 INPUTX

140 LETS=S+X

150 NEXT K

200 PRINT "AVERAGE =";S/N

999 END

A direct translation of this into Pascal — which, as we shall see, isnota good
Pascal program — is

program average(input, output),
{ ———finds the average of N numbers———}

var
n: integer,
k: integer;
s: real,
x: real,

read(n),
s:=0;
fork:=1tondo
begin
read (x);
S:=5+ X,
end;
writeln ( Average =',s | n);
end.

If you have never seen a Pascal program before, many differences from
BASIC will strike you straight away.

The most manifest is, paradoxically, one of the least significant: the fact that
the BASIC program uses upper case letters (i.c. capital letters) whereas the Pascal
program uses lower case. The first point to make is that this is largely a matter
of habit rather than requirement. We could have written the BASIC program in
lower case and the Pascal in upper case, and the programs would still be accept-
able to most compilers.

M___.



B s s it """""‘""—“'—'”*—w
FUNDAMENTALS 3 ;
Thehabit—anditis nota universal habit--of using uppercaselettersin BASIC 3
results largely from history. BASIC grew up in the early sixties when computers
had very small character sets; input to computers was often from punched cards or
primitive typewriters, and lower case letters were usually not available. More
recently, computers and devices for entering data into computers have supported
richer character sets. You no longer have to SHOUT AT THE COMPUTER IN
UPPER CASE, but can communicate in a much more refined way in lower case.
The pendulum has now swung so far that many programmers avoid upper case
altogether, and programming manuals for more recent languages tend to do
likewise. Doubtless it will swing back one day to a more moderate position.
The current convention is, however, quite useful for this book. We shall
present BASIC programs in upper case and Pascal programs in lower case. We
can thus talk about and compare programs without ambiguity.
It can also be seen that the Pascal program contains bold face words, such
as begin. Again, this is a habit of presentation rather than a fundamental
property of the language. When you type the program into the computer you
type the bold face letters as ordinary letters.

Declarations

A second striking facet of the programs is that in BASIC the action starts in line
one (or, strictly speaking, line two as the first line is a comment), whereas in the
Pascal program there are half a dozen lines of introduction before anything
actually happens. The first line is

program average(input, output);

A line of this form needs to come at the start of every Pascal program — the name

you choose to give the program, in this case average, being inserted into what is

almost a fixed template. We shall explain this program heading line later. The line

after the program heading is a Pascal comment, akin to a REM in BASIC.
Much more important are the lines

var
n: integer;
k: integer;
s: real;
x: real,

These are examples of declarations. In BASIC, if you want to use a variable X
you can do so with no fuss or preparation; in Pascal, on the other hand, you must
declare the variable X before you can use it. BASIC does, of course, contain the
concept of declarations. If you want to use an array (table) Q in BASIC you need
to declare it by a line such as

DIM Q (5, 8)
Pascal has the same idea, but you have to declare everything.

When you declare a variable you need to specify its data type. Data types
are one of the most powerful and exciting features of Pascal, though this is not



4 PASCAL FROM BASIC

brought out by our present sample program. Pascal has some built-in data types,
like the integer and real types used above, and also allows you to define your own
types, as we shall see. BASIC has an embryo idea of data type. Variables are
normally of numeric data type, as N, K, S and X in our example. However, if a
dollar sign is appended to its name a variable is of string data type, e.g. A$, P93.
Some BASICs also support an integer data type, often represented by names such
as K%, T%.

A data type specifies the set of values that an object may take. Associated
with each data type is a set of operators; you can for example apply a multiplica-
tion operator to numeric data. You cannot multiply two strings together, but
there are other operations that apply uniquely to strings, such as extracting a
substring. Some operators are polymorphic in that they apply to more than one
data type. In BASIC this applies, for example, to the assignment operator, and
to some operators on IF statements, e.g.

LETX =3
LET X$ = ""STRING"

IF X =Y THEN 30
IF X$ = Y$ THEN 50

Similar rules apply to Pascal. BASIC data types are manifest from the name
of a variable: X is numeric and X$ is a string. In Pascal any name can be used
for any variable. When you declare the variable you give its name and its
associated data type. We shall see later that there is freedom of choice with Pascal
names. We could, and indeed should, have used the name sum or even the name
sumofvariables rather than the name s. As a general principle it is better to choose
names that make the purpose of the variables clear; our use of single character
names was to maintain a direct correspondence with BASIC.

The data types used in the average program are real, which is the same as
the numeric type of BASIC, and integer. The variables s and x are declared to be
real variables, and » and k to be integer variables. (We could have written these
four declarations in any order, just as in BASIC you can declare arrays in any
order.) It is important in Pascal to distinguish variables that can only take on
integer values, like n and k in the average program, from those that can take any
numeric value, like s and x. The reasons for this stem mainly from the design of
current computers. If a variable is known to take only integer values, it can be
stored in a different and more compact way from a variable that can take any
numeric value. Moreover, operations on integers run much faster than on real
values; the factor may range from two to over one hundred. Finally, the integer
operations are exact. Real operations are inexact, and can give small round-off
errors. You may well have experienced the effects of this round-off when running
a BASIC program; perhaps you expected the answer 6 from a program and
instead the answer came back as 6.000000001.

In most BASICs you ignore the difference between integers and real num-
bers by making everything real (numeric), and you put up with the occasional
eccentricity such as the 6.000000001. In Pascal you can sometimes get away with
this, but cannot use a real variable on a for statement or as an array subscript.
Given these requirements and their indirect consequences, it is best to distinguish



' "'"""""““""“""""'""“
FUNDAMENTALS 5 ’

integers from reals. The only possible problem with using the integer data type .
is that some implementations place quite severe limits on the size of integers —

integers may, for example, be forbidden from exceeding 32,767. Consult your

local manual for details.

The program

When you look at the executable instructions in the Pascal program you are on
more familiar ground. The statements in the Pascal example are in one-to-one
correspondence with the BASIC example except that Pascal has a couple of
begins and ends. The begins and ends are one of the structuring concepts of Pascal.
Favourite concepts in programming come and go, but structuring has remained
on the best sellers’ list for several years now. The reason is quite fundamental:
the only way we can hope to understand a large program is to build it out of
smaller and simpler substructures.

To get an idea of the purpose of begin and end it is instructive to consider
two examples of FOR statements in BASIC and Pascal

BASIC Pascal

10 FORK =1TO 10 fork:=1to 10 do

20 LETS=S+K s:=s+k;

30 NEXT K

60 FORK =1TO 10 fork:=1to 10 do

70 LETS=S+K begin

80 LETT=T+ K=*K s:=s+k;

90 NEXT K t:=t+k*k;
end;

The FOR statement is the only structuring construct in standard minimal
BASIC. Each FOR is matched by a NEXT and the statements in between are
treated as a unit. In Pascal there are many structuring constructs within
programs, of which for is one. Several of these constructs use begin and end to
enclose a group of statements that is to be treated as a single unit. This unit is
called a compound statement. The for construction in Pascal is not in itself a
statement. It is a clause that must be prefixed to a single statement. If you want
to make several statements the subject of the for you put a begin and end round
them; this turns them into a compound statement, which counts as a single
statement. In our first for example above we do not need a begin and end because
there is only one statement to be iterated. However it does not matter if you insert
extra redundant begins and ends, so we could have put them in. Our second
example needs the begin and end because more than one statement is to be
repeated.

The body of an entire Pascal program is enclosed by a begin and end. The
final end is written

end.

The dot means it is the very end of the program. Like FOR and NEXT, begin and
end nest in a natural way, e.g.



6 PASCAL FROM BASIC

Here, the begin we have marked with the comment {A} matches the end
similarly marked, and so on. A good program is laid out so that it is visually
~ obvious which begins and ends match e.g.

It is, of course, wrong to have begins that are not matched by ends or vice-versa.

You will find that, because of the preponderance of structuring concepts in
Pascal, a little care in program layout will reap big rewards in readability. If you
are lucky, you will have a ‘prettyprinting’ utility on your computer. This is a
program that takes a Pascal program and turns it into a decently laid out form.
(Prettyprinters also exist for BASIC, but the task is a smaller one.) However,
although such programs are useful for a final tidy up, it is much better for you
to get in the habit of laying out programs decently from the outset.

Individual statements
The individual statements in our average program are similar in both BASIC and

Pascal, e.g.
BASIC Pascal
INPUT N read(n);
LETS=S+X S:=S+x;
PRINT "AVERAGE=""; S/N writein(' Average=", s [ n);

Pascal, unfortunately from the point of view of the BASIC programmer, uses
3 readto mean INPUT. Pascal has no concept similar to READ in BASIC, soif you



