


Logic Design and
Switching Theory

SABURO MUROGA

Professor of Computer Science
and Electrical Engineering

University of Illinois

A WILEY-INTERSCIENCE
PUBLICATION
JOHN WILEY & SONS

New York / Chichester
Brisbane / Toronto



Copyright © 1979 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Sections 107 or 108 of the

1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data

Muroga, Saburo.
Logic design and switching theory.

“A Wiley-Interscience publication.”

Includes bibliographical references and index.

1. Logic circuits. 2. Logic design. 3. Switching
theory. 4. Integrated circuits—Large scale integration.
5. Electronic circuit design—Data processing.

I. Title.

TK7868.L6M87 621.3815°37 78-12407
ISBN 0-471-04418-0

Printed in the United States of America

10987654321



Logic Design and
Switching Theory



Preface

The enormous progress in integrated circuit technology in the last decade
has brought about dramatic changes in logic design, and the pace of change
continues to accelerate. Progress in large-scale integration (LSI) has forced
many manufacturers having no previous connection with electronics—such
as watch, toy, or sewing machine manufacturers—into LSI design and even
in-house LSI production. Consequently, logic design is now important for a
much wider circle of people, and this circle will continue to grow. Although
logic design has been facilitated by off-the-shelf packages, the opportunities
for custom LSI design are increasing.

Logic design has also evolved into a more complex discipline, and the
logic designer must be familiar with its many aspects. As the number of
different integrated circuit (IC) logic families—e.g., ECL, TTL, NMOS,
CMOS, VMOS, and IIL—continues to grow, the designer must choose
the appropriate family to attain different design objectives, and use different
logic design procedures for different families. Compact and inexpensive
semiconductor memories, particularly ROMs and PLAs, are now often used
as important parts of logic networks. Hence the designer must carefully
consider which parts of a network should be realized with gates or memories.
Also, as IC costs decline, many complex job functions—such as the computa-
tion of trigonometric functions—are being designed in logic networks instead
of in software, and the designer must find appropriate algorithms to realize
such job functions. As a result of these and many other changes, logic
designers must now be familiar with not only switching theory but also
architecture, different IC logic families, memories, algorithms for hardware
implementation of complex job functions, programming for firmware,
diagnosis methods, electronics, and possibly many other related concerns.

The coverage of all these topics in this book is obviously impossible, and
instead emphasis is on minimization procedures, a classic topic that retains
its importance even in logic design with integrated circuits. Of course, the
minimization of an entire system depends on other factors, including the
choice of appropriate architectures, algorithms, and electronic circuit
designs, but the minimization of logic networks (in particular, key networks

v



vi Preface

such as adders) is still crucial. Unlike conventional minimization with discrete
gates, minimization in LSI design does not result directly in cost reduction.
Instead, it reduces the size and power consumption of a chip, which in turn
reduces the cost of the chip and increases its speed. As designers attempt
to pack more and more elements into a single chip, even partial minimization
will often dramatically reduce the chip size.

This book emphasizes algebraic minimization procedures for three
reasons: (1) Algebraic procedures sometimes can reduce design time drasti-
cally. For example, the algebraic procedure for deriving a minimal sum in
Section 4.6 is nearly 100 times faster than the conventional tabular method
treated in textbooks.

(2) Development of programs for computer-aided design (CAD) has been
extensively carried on in industry in regard to every aspect of design and
manufacture (including logic design), in order to reduce time, cost, and
error. This trend will be even stronger in the future. Algebraic concepts are
useful in implementing many CAD programs (also data base management
systems, as mentioned in Section 3.7). Like many computer programs in
other areas (such as business applications), many CAD programs need con-
tinuous maintenance or changes, as technology or usage changes. The com-
putational efficiences of CAD programs are highly dependent on the details
of the procedures. Also, many variations of the procedures may be needed for
different CAD programs. Thus the computational efficiencies and some
variations are discussed in this book so that students can handle different
problems efficiently.

(3) When a large number of transistors (soon a quarter million) are to be
packed into a single LSI chip, we need to rely more on CAD programs
implementing algebraic minimization procedures in order to reduce design
time and error. In this case, appropriately specifying or modifying the details
of the procedures will result in great differences in the size or speed of the
designed networks. This is particularly true when heuristic procedures
need to be applied in designing very large networks, giving up on absolute
minimization.

In conclusion, it is believed that slightly advanced knowledge of algebraic
procedures will greatly enhance students’ skill in logic design and also in CAD
programming.

This book is intended for a course that follows an introductory course
on digital computers (discussion of number representations, elementary
switching theory, standard networks, and control logic, typically based on
such textbooks as Computer Logic Design by M. M. Mano, and Design of
Digital Computers by H. Gschwind and E. J. McCluskey. To make this book
self-contained, some elementary concepts (such as Karnaugh maps) are



Preface vii

included which may overlap with topics in the introductory course on digital
computers and hence require only a review.

After the introduction in Chapter 1, this book discusses hardware im-
plementation of logic operations. Analysis of MOS networks is discussed in
detail, considering the increasing importance of the MOS in LSI.

Chapters 3 through 5 discuss switching algebra and algebraic procedures.
To strengthen students’ intuitive grasp, mathematical concepts are pictorially
illustrated with Karnaugh maps. Excercises are indispensable for under-
standing. Students who may be overwhelmed initially by algebraic termin-
ology will understand algebraic concepts as they advance through succeeding
chapters. It is believed that Tison’s methods in Procedures 3.4.2, 5.1.1, and
5.1.2 are presented here for the first time in a textbook. The author’s Pro-
cedures 4.6.1, 5.2.1, and 5.2.2 are not available elsewhere in book or paper
form. (Procedure 4.6.1, in particular, is highly efficient for hand computation,
and useful when a minimal sum cannot be conveniently handled by the
Karnaugh map method. Also, Procedure 5.1.1 or Procedure 5.1.2 can yield
a minimal sum for a function of many variables very quickly if the given
function is not too complex. Where an engineer in industry, as it has come to
light, tried to find a minimal sum by working on 16 maps simultaneously,
these procedures would have provided a powerful improvement.) By studying
these chapters, students can learn techniques to speed up calculation in
switching algebra.

Logic design of NAND (or NOR) gate networks is usually not discussed
in detail in textbooks despite its vital importance in current IC technology. A
major part of Chapter 6 is thus devoted to this subject. To treat this problem,
the map-factoring method of G. A. Maley and J. Earle is discussed, with
minor modification. Also, the author’s extensions (not available elsewhere)
are presented as Procedures 6.4.1 and 6.5.1. The rest of Chapter 6 is devoted to
problems that are important in design practice; in particular, Section 6.7
discusses the response time of combinational networks.

Chapters 7 and 8 are devoted to sequential networks, the design of which
is inherently complex and consequently difficult to teach. If we emphasize
easy understanding, as has been done in the past, the complex situation is
oversimplified, giving students an unrealistic picture. On the other hand, if
we emphasize the realistic picture of sequential network design, this may be
harder for students to understand. Facing this dilemma, the author con-
cluded that it may be time to give the realistic picture, since logic design is
becoming a more important profession and this book is for an advanced
course. On the basis of this decision (this stance is maintained throughout
the book—procedures would not be useful if calculation techniques were
not detailed), asynchronous sequential networks, considerably more



viii Preface

complex than synchronous sequential networks, are first discussed in
Chapter 7—because sequential networks in fundamental mode are basic in
both asynchronous and synchronous sequential networks (see the next
paragraph); because unless the malfunctioning of asynchronous networks
due to hazards or races is understood, the advantages of synchronous net-
works with raceless flip-flops may not be appreciated ; and because asynchro-
nous sequential networks are useful for high-speed computers.

Another problem in the discussion of sequential networks is pulse mode,
which is widely presented in literature. Since the concept of pulse mode is
only vaguely defined or inappropriate in electronic implementation (see the
footnote in Section 8.3), skew mode is introduced in conjunction with
raceless flips-flops, with the view that the concept is simply a convenient
means to analyze or synthesize sequential networks with raceless flip-flops,
which can also be analyzed or synthesized by fundamental mode. Also, there
are sequential networks that are not in skew mode but in fundamental mode.

No attempt is made to present elaborate mathematical results on se-
quential networks, which are abundant in literature, because space is limited
and such results, though conceptually important and exceedingly interesting
academically, are time-consuming in nature and hence usually difficult to
apply in design practice.

Chapter 9 tries to bridge the developments in the preceding chapters with
logic design practice, discussing computer design practice, various design
motivations, design time, important standard networks, logic networks
with a mixture of gates and memories, PLAs (programmable logic arrays),
flow charts for logic design, and diagnosis methods. Some of these, such as
PLAs, are important topics for CAD programs. Since logic design practice
is becoming enormously complex, as mentioned in the beginning, this book
does not attempt to discuss the entire picture of design practice or all aspects
of computer system design. The discussion in Chapter 9 is limited to the
aspects related to the preceding chapters. The design procedures in the earlier
chapters are useful in LSI design—for example, PLAs and gate arrays,
widely used as inexpensive LSI implementations. The author’s procedure in
Section 9.3(b) is not available elsewhere.

The remarks scattered throughout this book provide pertinent infor-
mation for advanced readers, with the intention of making this book serve
as a reference book. In college courses, it is appropriate that students skip
these remarks.

This book is the outcome of lecture notes used for the last several years at
the University of Illinois at Urbana. Many people have helped on numerous
occasions, for which the author is grateful. In particular, Professors L. L.
Dornhoff, the late F. E. Hohn, G. A. Metze, and D. E. Muller, and Dr. J. E.
Forbes, used the classnotes in their teaching; and Messrs. R. B. Cutler,



Preface ix

W. T. Dumas, R. Fujimoto, S. Isoda, S. Murai, and T. Ogino, A. Sakurai,
Professor D. S. Watanabe, Mrs. M. H. Young, and Dr. R. O. Winder, made
valuable discussions and suggestions. Also, especially, Professor L. L. Dorn-
hoff read through the entire manuscript repeatedly and made many correc-
tions and improvements, and Mr. R. B. Cutler’s discussions on the
procedures in Sections 5.1 and 5.2 were invaluable. The Department of
Computer Science at the University of Illinois provided generous support for
the preparation of the classnotes, and grants by the National Science Founda-
tion (GJ-503-1, GJ-40221, DCR73-03421 A01, and MSC77-09744) produced
research results used throughout this book. Finally, thanks to Mrs. Z.
Arbatsky and Mrs. R. Taylor for their excellent and patient typing of many
revisions of the classnotes.

Urbana, Illinois SABURO MUROGA
January 1979



How To Use This Book

On the Exercises

A, B, C, . .. denote exercises of the same nature, so only one of them
should be assigned.

(R) means that an exercise serves to review what is discussed in
text.

(E) means that an exercise is easy.

(M) means that an exercise is of medium difficulty. Among those
marked with M, exercises easier than the average and those
more difficult are designated as M — and M +, respectively, the
difficulty increasing in the order of M—, M, and M +.

(D) means that an exercise is difficult.

(T) means that an exercise is time-consuming.

On the Sections Labeled with A

Sections or topics labeled with A are optional, and skipping them will
not impede the understanding of later material. Exercises correspond-
ing to these sections or topics are labeled with A.

On the Remarks

Remarks present advanced information, and skipping them will not
impede the understanding of later material. It is advised that in college
teaching, the remarks be completely skipped.

xi



Contents

CHAPTER 1
INTRODUCTION

1

1.1 Motivations for Study of Logic Design and Switching Theory 1

1.2 History
1.3 Introduction to Basic Logic Operations
1.4 Truth Tables

CHAPTER 2

IMPLEMENTATION OF LOGIC OPERATIONS AND
ANALYSIS OF COMBINATIONAL NETWORKS

2.1 Basic Properties of Relays and Switches

2.2 Analysis of Relay Contact Networks and Electrical Switch
Networks

Exercises

2.3 Analysis of Networks of Electronic Gates
Analysis of MOS Networks
Analysis of Bipolar Transistor Networks
Features of Electronic Gate Networks

2.4 Discrete Components and Integrated Circuits

Exercises

CHAPTER 3
FUNDAMENTALS OF SWITCHING ALGEBRA

3.1 Theorems of a Few Variables
3.2 Theorems of n Variables
Exercises

3.3 Karnaugh Maps

S
6
11

15
15

22
29
36
36
46
50
53
61

68

68
71
82
87

xiii



xiv Contents

3.4 Implication Relations and Prime Implicants
3.5 Algebraic Design Methods and Computer-Aided Design
Exercises
A 3.6 Boolean Algebra
A Exercises
A 3.7 Propositional Logic
A Exercises
Exercises

CHAPTER 4
SIMPLIFICATION OF SWITCHING EXPRESSIONS

4.1 Design Objectives and Minimal Sums
4.2 Derivation of Minimal Sums by Karnaugh Map

4.3 Prime Implicates, Irredundant Conjunctive Forms, and
Minimal Products

4.4 Design of Two-level Minimal Networks with AND and
OR Gates

Exercises
4.5 Tabular Method to Derive a Minimal Sum
4.6 Algebraic Method to Derive Minimal Sums
Exercises

CHAPTER 5

ADVANCED SIMPLIFICATION TECHNIQUES AND
BASIC PROPERTIES OF GATES

5.1 Derivation of Irredundant Disjunctive Forms without
Use of Minterms

Exercises

5.2 Design of a Two-Level Multiple-Output Network with
AND and OR gates

Exercises

5.3 Comparison of the Different Methods for Derivation of
a Minimal Sum

A 5.4 Design of Networks with AND and OR Gates under

Arbitrary Restrictions

5.5 Gate Types

Exercises

92
106
108
111
113
114
118
120

124

124
139

147

154
156
163
180
188

195

195
212

214
239

245

247
252
263



Contents xv
CHAPTER 6

DESIGN OF NAND (NOR) NETWORKS AND
PROPERTIES OF COMBINATIONAL NETWORKS 272

6.1 Introduction to Design of NAND (or NOR)
Networks 273

6.2 Switching expressions for NAND (or NOR) Networks 271
6.3 Design of NAND (or NOR) networks in Single-Rail

Input Logic by the Map-Factoring Method 281
A 6.4 Design of Three-Level NAND (or NOR) Networks
in Single-Rail Input Logic 301
A 6.5 Design of NAND (or NOR) Networks in Double-Rail
Input Logic by the Map-Factoring Method 308
A 6.6 Other Design Methods for NAND (or NOR) Networks 310
Exercises 312
6.7 Transient Response of Combinational Networks 320
A 6.8 Classification of Switching Functions and Networks 327
6.9 General Comments on Combinational Networks 336
Exercises 337
CHAPTER 7
ASYNCHRONOUS SEQUENTIAL NETWORKS 347
7.1 Latches 347
7.2 Sequential Networks in Fundamental Mode 352
7.3 Malfunctions and Performance Descriptions of
Sequential Networks 359
Exercises 367
7.4 Introduction to the Synthesis of Sequential Networks 373
7.5 Translation of Word Statements into Flow-Output
Tables 385
Exercises 391
7.6 Minimization of the Number of States 393
7.7 State Assignment 413
7.8 Design of Sequential Networks in Fundamental Mode 421
7.9 General Comments on Asynchronous Sequential
Networks in Fundamental Mode 427

Exercises 429



xvi Contents

CHAPTER 8
SYNTHESIS OF SYNCHRONOUS SEQUENTIAL
NETWORKS 440
8.1 Clocked Networks 440
8.2 Raceless Flip-Flops 451
Exercises 460
8.3 Sequential Networks with Master-Slave Flip-Flops in
Skew Mode 463
8.4 Translation of Word Statements into Flow-Output
Tables 472
8.5 Design of Sequential Networks in Skew Mode 483
8.6 General Comments on Sequential Networks 490
Exercises 492
CHAPTER 9

PRACTICAL CONSIDERATIONS IN LOGIC DESIGN 502

9.1 Diversified Design Motivations and Design

Approaches 502
9.2 Design of Standard and Large Networks 510
A 9.3 Design of Sequential Networks with Given Building
Blocks 521
Exercises 534
9.4 Design of Networks with a Mixture of Memories and
Gates 538
Exercises 559
9.5 Logic Design with Flow Charts 564
Exercises 573
9.6 Simulation, Test, and Diagnosis 574
Exercises 585
REFERENCES 593

INDEX 613



CHAPTER 1

Introduction

Digital systems such as electronic digital computers or electronic telephone
exchanges contain digital networks that perform logic operations on digital
input signals. Each digital network consists of gates that perform basic logic
operations. This book discusses the design of the logic operation aspect of
digital systems (in contrast to electronic design or others) as well as a related
theory—in other words, logic design of networks with gates and switching
theory.

Chapter 1 discusses motivations, history, and some basic concepts of
logic design and switching theory.

1.1 Motivations for Study of Logic Design and Switching Theory

Logic design is the design of digital networks with gates so that the networks
perform specified logic operations on input signals, in contrast to electronic
design of digital networks, which derives electronic circuits with the desired
electronic performance, such as the desired speed, power consumption, or
waveforms. In a broader sense, ‘*logic design” includes the design of struc-
tural aspects of the entire computer systems, that is, the architectural design
of computer systems. The distinction between these meanings of “‘logic
design” is often not very clear. This book deals mainly with logic design in
the first sense. The design theory of digital networks is called switching
theory, since it is a theory not only for networks of gates but also for those of
switching devices such as relays or electrical switches that are older digital
networks. A special case of Boolean algebra that serves as a basic mathe-
matical tool in switching theory is called switching algebra.*

The integrated circuit (IC) is a recently developed and still developing
approach to implementing gates, connections, or entire networks on a tiny
semiconductor chip in an integrated way. The development of IC technology

* Very often, " Boolean algebra™ is used by authors as a synonym of *‘switching algebra”
because the difference is subtle. Strictly speaking, however, switching algebra is a special case
of Boolean algebra, as will be explained in Section 3.6.



2 Introduction

has brought about many changes. The enormous reduction in the cost and
size of digital networks due to IC technology is expanding the applications
of digital systems from the traditional ones, such as digital computers and
electronic telephone exchanges, into many new areas. Examples of such new
applications are sewing machines (e.g., Singer’s Athena 2000), cameras (e.g.,
Polaroid SX-70), digital watches, video games, nonvideo games (e.g., Parker
Brother’s Sector), automobiles, and home computers [Weisbecker 1974];
many others are yet to come. Thus logic design not only is indispensable for
computers but also is becoming very important for all products that incor-
porate digital systems (no matter how small or large these systems may be).
As IC technology is still making great strides, it is very difficult at the current
stage to foresee what great technological or social impacts it will have. In the
following paragraphs we will review the changes in logic design that IC
technology is making.

If a designer is not attempting to attain in his or her networks the best
electronic performance (e.g., speed) or economy possible with current IC
technology, logic design is now much simpler than before, since a large
number of ready-made IC packages (i.c., off-the-shelf packages), which con-
tain standard networks, that is, frequently used networks such as adders or
multipliers, are commercially available. What the designer must do is simply
to choose appropriate off-the-shelf packages and then interconnect them.
In particular, fairly complex digital systems can be quickly and easily im-
plemented by using off-the-shelf microcomputers. Consequently a designer
need not design individual networks from scratch, though it may occasionally
be necessary to so design some small interface networks which interconnect
the off-the-shelf packages. Architectural considerations or clever assembling
of IC packages is important.

Custom design of large scale integrated circuit packages, that is, LSI
packages, including custom design of microcomputer packages such as those
for automobiles [Puckett, Marley, and Gragg 1977], is becoming popular,
as will be explained in Section 2.4. If a designer does not attempt to exert
time-consuming efforts in laying out networks on a chip inside an LSI
package, packing as many gates as possible, he or she can take an approach
similar to the assembling of off-the-shelf packages explained above. In other
words, for each custom LSI design, the designer simply assembles standard
layouts, which are previously prepared for frequently used networks, on an
LSI chip. With this approach an LSI chip can be easily and quickly custom-
designed, though best performance is seldom attained. The short design time
reduces design cost. On the other hand, the manufacturing cost of the de-
signed LSI is usually high. This can be justified, however, when the LSI chip
is part of much more expensive products such as measurement instruments
or intelligent terminals.



Motivations for Study of Logic Design and Switching Theory 3

If a designer wants to attain the best economy or electronic performance
achievable with current IC technology, however, logic design is far more
difficult and challenging for the reasons presented below. Excellent LSI
designers will become the ““superstars” of the profession [Petritz 1977].

First, unlike the days when only two logic families, TTL (transistor—
transistor logic) for low cost and ECL (emitter coupled logic) for high
speed, were available, there now exist a large number of IC logic families,
that is, different types of electronic circuits to implement gates or logic
operations. As these logic families have different features in regard to
economy, performance, and size, the designer must single out the most
appropriate family. Design procedures for each logic family are different.

Second, networks can be implemented with discrete components or with
IC packages of different integration sizes, that is, SSI (small scale integration),
MSI (medium scale integration), LSI, or VLSI (very large scale integration).
Also, LSI or VLSI packages can be either custom-designed or off-the-shelf
packages. The designer must choose the most appropriate ones (possibly a
mixture) by considering production volume, completion time, design change
possibilities, cost, size, and performance. If frequent design changes are
expected, discrete components are still the common choice. When produc-
tion volume is high and no design change is expected, custom LSI or VLSI
design is becoming popular. In this case, if the designer is trying to attain
the best electronic performance or economy, custom design is a highly
challenging problem, since it is necessary to pack gates as tightly as possible
and to find the most appropriate layout under complex layout rules. When-
ever new IC processing methods or layout rules are developed, designers
usually must redesign even standard networks from scratch.

Third, IC technology has made possible the replacement of gates by
memories (mainly, read-only memories), since memories are becoming
compact, inexpensive, and fast, and consequently logic networks are often
designed with a mixture of gates and memories, in order to reduce cost. (In
this case, memories are not used to store computer programs, data, and
intermediate computational results, as is the conventional practice in com-
puters.) Finding the best approaches to using memories is not an easy task
for designers.

Fourth, enormously large networks are being designed compactly and
economically because of the ever-decreasing size and cost of gates, but it is
becoming vitally important to design such very large networks without
errors, as well as to determine whether or not designed or manufactured IC
packages or digital systems are faulty. Logic design must take care of this
problem.

In addition, there are many other problems such as reliability of systems
or power supplies.



