EEHEG S TE

(SR3ZhR)

Ojec_t-Orier]ted
Software Engineering

tephen R. Schach

Stephen R. Schach
BB REFKRE

(%)

&
ML T v AR A

China Machine Press

2. 2 5 B t B

HEMERGETE

(R3ZhR)

Object-Oriented
Software Engineerin

Stephen R. Schach _,_

8] SEELLREXZF

@mv&lﬂktﬂﬁ%i

¥ China Machine Press

Stephen R. Schach: Object-Oriented Software Engineering (ISBN 978-0-07-352333-0).

Copyright © 2008 by The McGraw-Hill Companies, Inc.

Original language published by The McGraw-Hill Companies, Inc. All rights reserved.
No part of this publication may be reproduced or distributed in any means, or stored in a
database or retrieval system, without the prior written permission of the publisher.

Authorized English language reprint edition jointly published by McGraw-Hill Education
(Asia) Co. and China Machine Press. This edition is authorized for sale in the People’s Republic of
China only, excluding Hong Kong, Macao SARs and Taiwan. Unauthorized export of this edition is a
violation of the Copyright Act. Violation of this Law is subject to Civil and Criminal Penalties.

A A5 B SCRENRR LR Tl HE AR A6 [E A 55— R ECA R CEOl) & R &1E
IR, BEERA (U RIE Fp e AR IEFNESE N (R EAEE M, IR T X A1) #HE.
RVEAT 20, FAE R EHERUE, Bk hili.

AR e B I VE T, RELMEM R E H S 2R BRI 5.

A5 E A McGraw-Hill A ®IBG fhbr% , TAnZ & AR,

R R, RIULR.
FBEEME ARHRABINESA

ABRAVRIZS: 3. 01-2008-1763
EHBERBE (CIP) ¥HE

R R TR (Beschi) / (35) bk (Schach, S.R.) #. —Ab3t: HLB Tk
iR tt, 2009.3

(L7 R 5 %)
4545 32 Object-Oriented Software Engineering

ISBN 978-7-111-26526-9
L 0 L ERARIEE—RFgI -5 V. TP312
th A BB ECIPHCR R (2000) 0313755

BBk AR A (sl sk 5 TE k#1225 BBECHRRYS 100037)
TS RRE

AL FUR IR EN 45 £ B 2+ =] EN Al

20094E3 H 55 TR 55 1R EN Al

150mm % 214mm + 18.125F[15k

FrifEf52 . ISBN 978-7-111-26526-9

Er: 49.007¢C

JUaAS, tnAEm, B, Ghil, mAH &R
ArtlgFhsk. (010) 68326294

HhREBIIE

XEE U, B KIRHA R E SR #EARAME, EE5E
KIEAARBEN & DGR TR LERXENESE, FXE
EfE BHEAR BRI ZERAFKEL . MU, EilbithdEd, £
EM LR SEERFEEREFE S, RN HMF L R ILAL R
BRI E AR AT £k, AR S BEEE, AR THFRR
ukE, LR T EARNEE, BEEARHE, XaA%EME, HNEHF
AN 5 BRUAE H IR if gl

EE, E2KEEAR#MIED T, REMFREL™ LA RAE, &
W AFHIFTRH B8], Xt LA E R R A A RE A L8, Bk
s MELBEHMAEZEHFT IR EEE¥ERE, ERERGEHAL R
AR RIBLAR T, EE % ROR E K AR T RNLEH# % B/ L+ ERBE Ik
RIS HMEMPBATZEGESEZL. Bk, sl#E—#tEIMEF IR
B RERILEEF LA R RSB ER, bS5t &
X HAERT R — R K F L 28,

PUM Dol ik e Bt R R EIRE "HREAKEFIRS ™. B 19984 JF
i, EF s CUEE AU Tk, BiEEIMESHM £, 23 250
g% 1, Fl15Pearson, McGraw-Hill, Elsevier, MIT, John Wiley &
Sons, Cengage¥Fiitt & R A RIS TRAMEIERR, MIITELA R
M FhZ 44 h 8% H Andrew S. Tanenbaum, Bjarne Stroustrup, Brain W.
Kernighan, Dennis Ritchie, Jim Gray, Afred V. Aho, John E. Hopcroft,
Jeffrey D. Ullman, Abraham Silberschatz, William Stallings, Donald E. Knuth,
John L. Hennessy, Larry L. Peterson® KM £ K AI—#HLBES, UL “iHEHL
BT A8, ftiRE¥]. HARE®. KEASENEm, th
IEAREL T X ENBHY S LA,

“HRALEFEAET IR TERE TENIMEER R DR, BAME
FEACHRME T EREBIE S, SR SHRE TEIFME & TE: M

FEHOEELEYRELEMETENGE, AL ERALBIIFIERIE
JFo 24, “UHREIBEASE" SR TEmaTamM, XEREERES
WAL T RO, HF2aRAAEXRBHMSEBE, HEHK
“ep AR ET 1 A i ik A BOR B % SC A B Y AT R A

PRI ER . SHBMNEM . —REE. THROER. HANRE, X
HRFERNWE LA TREMRIE. BEEUTREIWFESEARL L¥ARER
AT 52 RN BOM S DR ORI, B0R 5 et [S0 L AL BOb B 75 Sk 0 L
LA BN B, RN BEFGRRERE, iR E L ERRE
B — AR DA EEZAB) . R 5o byl Z U N s J AT TR i
A THRIE, ATV AR BT

LZE/ L. www.hzbook.com

B8 FH{F . hzjsj@hzbook.com

EEZ®BIE (010) 88379604

BEMH #FTHRETHT EHHLS
BB RS . 100037

Preface

The wheel has turned full circle.

In 1988. 1 wrote a textbook entitled Software Engineering. Virtually the only
mention of the object-oriented paradigm in that book was one section that de-
scribed object-oriented design.

By 1994, the object-oriented paradigm was starting to gain acceptance in the
software industry. so [wrote a textbook called Classical and Object-Oriented
Software Engineering. Six years later. however. the object-oriented paradigm
had become more important than the classical paradigm. To reflect this change.
I switched the order of the two topics in the title of the textbook I wrote in 2000,
and called it Object-Oriented and Classical Software Engineering.

Nowadays. use of the classical paradigm is largely restricted to maintaining
legacy software. Students learn C++ or Java as their first programming language.
and object-oriented languages are used in subsequent computer science and
computer engineering courses. Students expect that. when they graduate. they will
work for a company that uses the object-oriented paradigm. The object-oriented
paradigm has all but squeezed out the classical paradigm. And that is why [have
written a textbook entitled Object-Oriented Software Engineering.

Features (iTms Book

* The Unitied Process is still largely the methodology of choice for object-oriented software
development. Throughout this book, the student is therefore exposed to both the theory
and the practice of the Unified Process.

* In Chapter | (“The Scope of Object-Oriented Software Engineering™), the strengths of
the object-oriented paradigm are analyzed in depth.

» The iterative-and-incremental life-cycle model has been introduced as early as pos-
sible. namely. in Chapter 2 (“Software Life-Cycle Models™). Agile processes are also
discussed in this chapter.

* In Chapter 3 (“The Software Process™). the workflows (activities) and processes of the
Unified Process are introduced, and the need for two-dimensional life-cycle models is
explained.

* A wide variety of ways of organizing software teams are presented in Chapter 4 (“Teams™).
including teams for agile processes and for open-source software development.

¢ Chapter 5 (“Tools of the Trade™) includes information on important classes of CASE
tools.

* The importance of continual testing is stressed in Chapter 6 (“Testing™).

¢ Objects are the focus of attention in Chapter 7 (“From Modules to Objects™).

* In Chapter 8 (“Reusability and Portability™). design patterns have been stressed.

* The new IEEE standard for software project management plans is presented in Chapter 9
(“Planning and Estimating™).

vi

Preface

Chapter 10 (“The Requirements Workflow”), Chapter 11 (“The Analysis Workflow™),
Chapter 12 (“The Design Workflow™), and Chapter 13 (“The Implementation Work-
flow”) are largely devoted to the workflows (activities) of the Unified Process.

The material in Chapter 13 (“The Implementation Workflow”) clearly distinguishes
between implementation and integration.

The importance of postdelivery maintenance is stressed in Chapter 14 (“Postdelivery
Maintenance™).

Chapter 15 (“More on UML") provides additional material on UML to prepare the
student thoroughly for employment in the software industry. This chapter is of particu-
lar use to instructors who utilize this book for the two-semester software engineering
course sequence. In the second semester, in addition to developing the team-based term
project or a capstone project, the student can acquire additional knowledge of UML,
beyond what is needed for this book.

There are two running case studies. The MSG Foundation case study and the eleva-
tor problem case study have been developed using the Unified Process. Java and C++
implementations are available online at www.mhhe.com/schach.

In addition to the two running case studies that are used to illustrate the complete life
cycle. seven mini case studies highlight specific topics. such as the moving-target prob-
lem, stepwise refinement, design patterns, and postdelivery maintenance.

[stress the importance of documentation. maintenance, reuse. portability, testing, and
CASE tools. It 1s no use teaching students the latest ideas unless they appreciate the
importance of the basics of object-oriented software engineering.

Attention is paid to object-oriented life-cycle models. object-oriented analysis, object-
oriented design, management implications of the object-oriented paradigm, and the
testing and maintenance of object-oriented software. Metrics for the object-oriented
paradigm also are included. In addition, many briefer references are made to objects, a
paragraph or even only a sentence in length. The reason is that the object-oriented para-
digm is not just concerned with how the various workflows are performed but rather
permeates the way we think about software engineering. Object technology pervades
this book.

The software process underlies the book as a whole. To control the process, we have to
be able to measure what is happening to the project. Accordingly, there is an emphasis
on metrics. With regard to process improvement, there is material on the capability
maturity model (CMM), ISO/IEC 15504 (SPICE), and ISO/IEC 12207; the people
capability maturity model (P-CMM) has been included in the chapter on teams.

The book is language independent; the few code examples are presented in C++ and
Java, and 1 have made every effort to smooth over language-dependent details and
ensure that the code examples are equally clear to C++ and Java users. For example,
instead of using cout for C++ output and System.out.printin for Java output, I have
utilized the pseudocode instruction print. (The one exception is the second case study.
where complete implementation details are given in both C++ and Java.)

This book contains over 600 references. I have selected current research papers as
well as classic articles and books whose message remains fresh and relevant. There
1s no question that object-oriented software engineering is a rapidly moving field, and

Preface vii

students therefore need to know the latest results and where in the literature to find
them. At the same time, today’s cutting-edge research is based on yesterday's truths,
and I see no reason to exclude an older reference if its ideas are as applicable today as
they originally were.

» With regard to prerequisites, it is assumed that the reader is familiar with one high-level
object-oriented programming language such as C++ or Java. In addition, the reader is
expected to have taken a course in data structures.

How This Book Is Organized

This book is written for both the traditional one-semester and the newer two-semester
software engineering curriculum, now growing in popularity. In the traditional one-
semester (or one-quarter) course, the instructor has to rush through the theoretical material
to provide the students the knowledge and skills needed for the term project as soon as
possible. The need for haste is so that the students can commence the term project early
enough to complete it by the end of the semester. To cater to a one-semester, project-based
software engineering course, Part 2 of this book covers the software life cycle, workflow
by workflow. and Part | contains the theoretical material needed to understand Part 2. For
example, Part | introduces the reader to CASE, metrics, and testing; each chapter of Part 2
contains a section on CASE tools for that workflow, a section on metrics for that workflow,
and a section on testing during that workflow. Part 1 is kept short to enable the instructor
to start Part 2 relatively early in the semester. Furthermore, the last two chapters of Part |
(Chapters 8 and 9) may be postponed, and then taught in parallel with Part 2. As a result.
the class can begin developing the term project as soon as possible.

We turn now to the two-semester software engineering curriculum. More and more
computer science and computer engineering departments are realizing that the overwhelm-
ing preponderance of their graduates find employment as software engineers. As a result,
many colleges and universities have introduced a two-semester (or two-quarter) software
engineering sequence. The first course is largely theoretical (but often includes a small
project of some sort). The second course comprises a major team-based term project. This
is usually a capstone project. When the term project is in the second course, there is no need
for the instructor to rush to start Part 2.

Therefore. an instructor teaching a one-semester (or one-quarter) sequence using this
book covers most of Chapters | through 7 and then starts Part 2 (Chapters 10 through 15).
Chapters 8 and 9 can be taught in parallel with Part 2 or at the end of the course while the
students are implementing the term project. When teaching the two-semester sequence, the
chapters of the book are taught in order; the class now is fully prepared for the team-based
term project that it will develop in the following semester.

To ensure that the key software engineering techniques of Part 2 truly are understood.
each is presented twice. First, when a technique is introduced. it is illustrated by means of
the elevator problem. The elevator problem is the correct size for the reader to be able to
see the technique applied to a complete problem. and it has enough subtleties to highlight
both the strengths and weaknesses of the technique being taught. Then, the relevant portion
of the MSG Foundation case study is presented. This detailed solution provides the second
illustration of each technique.

viii

Preface

The Problem Sets

This book has five types of problems. First, there are running object-oriented analysis and
design projects at the end of Chapters 10, 11, and 12. These have been included because
the only way to learn how to perform the requirements, analysis, and design workflows is
from extensive hands-on experience.

Second, the end of each chapter contains a number of exercises intended to highlight
key points. These exercises are self-contained: the technical information for all the exer-
cises can be found in this book.

Third, there is a software term project. It is designed to be solved by students working
in teams of three, the smallest number of team members that cannot confer over a standard
telephone. The term project comprises 14 separate components, each tied to the relevant
chapter. For example, design is the topic of Chapter 12, so in that chapter the component of
the term project is concerned with software design. By breaking a large project into smaller,
well-defined pieces, the instructor can monitor the progress of the class more closely. The
structure of the term project is such that an instructor may freely apply the 14 components
to any other project that he or she chooses.

Because this book has been written for use by graduate students as well as upper-class
undergraduates, the fourth type of problem is based on research papers in the software
engineering literature. In each chapter, an important paper has been chosen. The student
is asked to read the paper and answer a question relating to its contents. Of course, the
instructor is free to assign any other research paper; the For Further Reading section at the
end of each chapter includes a wide variety of relevant papers.

The fifth type of problem relates to the case study. This type of problem has been
included in response to a number of instructors who feel that their students learn more
by modifying an existing product than by developing a new product from scratch. Many
senior software engineers in the industry agree with that viewpoint. Accordingly, each
chapter in which the case study is presented has problems that require the student to
modify the case study in some way. For example, in one chapter the student is asked what
the effect would have been of performing the steps of the object-oriented analysis in a
different order. To make it easy to modify the source code of the case study, it is available
on the World Wide Web at www.mhhe.com/schach.

The website also has material for instructors, including a complete set of PowerPoint
lecture notes, and detailed solutions to all the exercises as well as to the term project.

Material on UML

This book makes substantial use of the Unified Modeling Language (UML). If the students
do not have previous knowledge of UML, this material may be taught in two ways. I prefer
to teach UML on a just-in-time basis; that is, each UML concept is introduced just before
it is needed. The following table describes where the UML constructs used in this book are
introduced.

Preface ix

Section in Which the Corresponding

Construct UML Diagram is Introduced
Class diagram, note, inheritance (generalization), Section 7.7
aggregation, association, navigation triangle
Use case Section 10.4.3
Use-case diagram, use-case description Section 10.7
Stereotype Section 11.4
Statechart Section 11.9
Interaction diagram (sequence diagram, communication Section 11.18
diagram)

Alternatively, Chapter 15 contains an introduction to UML, including material above
and beyond what is needed for this book. Chapter 15 may be taught at any time: it does not
depend on material in the first 14 chapters. The topics covered in Chapter 15 are given in
the following table:

Section in Which the Corresponding

Construct UML Diagram is Introduced
Class diagram, aggregation, multiplicity, composition, Section 15.2
generalization. association
Note Section 15.3
Use-case diagram Section 15.4
Stereotype Section 15.5
Interaction diagram Section 15.6
Statechart Section 15.7
Activity diagram Section 15.8
Package Section 15.9
Component diagram Section 15.10
Deployment diagram Section 15.11
Acknowledgments

[should like to thank the reviewers of this book:

Michael A. Aars, Anita Kuchera,

Baylor University Rensselaer Polytechnic Institute
Keith S. Decker, Matthew R. McBride,
University of Delaware Southern Methodist Universiry
Xiaocong Fan, Michael McCracken,

The Pennsylvania State University Georgia Institute of Technology
Adrian Fiech, Rick Mercer,

Memorial University University of Arizona

Sudipto Ghosh, Richard J. Povinelli,

Colorado State Universit Marquette University

x Preface

David C. Rine, John Sturman,

George Mason University Rensselaer Polytechnic Institute
Keng Siau, Levent Yilmaz,

University of Nebraska-Lincoln Auburn University

[warmly thank three individuals who have also made significant contributions to previous
books I have written. First, Kris Irwin provided a complete solution to the term project,
including implementing it in both Java and C++. Second, Jeff Gray implemented the MSG
Foundation case study. Third, Lauren Ryder was a coauthor of the Instructor’s Solution
Manual and contributor to the PowerPoint slides.

I turn now to McGraw-Hill. [am truly grateful to Senior Managing Editor Faye Schilling
for her willingness to take over the role of production manager mid-project. [am also most
appreciative of her readiness to modify the schedule when needed. Developmental Editor
Lora Kalb was a pillar of strength from start to finish; it was a real pleasure to work with
Lora again. [also warmly thank copyeditor Lucy Mullins, proofreader Dorothy Wendell,
and Production Manager Joyce Berendes. Finally, I am grateful to Brenda Rolwes in co-
ordinating with cover designer Jenny Hobein from Studio Montage. Jenny transformed a
photograph of Sydney Harbour Bridge into a striking cover.

[would like to thank the numerous instructors from all over the world who sent me
e-mail regarding my other books. I look forward with anticipation to receiving instructors’
feedback on this book also. My e-mail address is srs@vuse.vanderbilt.edu.

Students, too, continue to be most helpful. Once more I thank my students at Vanderbilt
University for their provocative questions and constructive suggestions, both inside and
outside the classroom. I also am most appreciative of the questions and comments e-mailed
to me by students from all over the world. As with my previous books, I look forward
keenly to student feedback on this book, too.

Finally, as always, [thank my family for their continual support. As with all my previ-
ous books, I did my utmost to try to ensure that family commitments took precedence over
writing. However, when deadlines loomed, this was sometimes not possible. At such times,
they were always understanding, and for this I am most grateful.

It is my privilege to dedicate my fourteenth book to my grandson, Jackson, with love.

Stephen R. Schach

Contents

PART ONE

INTRODUCTION TO OBJECT-
ORIENTED SOFTWARE
ENGINEERING 1

Chapter 1
The Scope of Object-Oriented Software
Engineering 3

2] Bbr 3
1.1 Historical Aspects 4
1.2 Economic Aspects 7
1.3 Maintenance Aspects 8
1.3.1 The Modern View of
Maintenance 9
1.3.2 The Importance of Post-
delivery Maintenance 11
1.4 Requirements, Analysis, and
Design Aspects 13
1.5 Team Development Aspects 15
1.6 Why There Is No Planning Phase 16
1.7 Why There Is No Testing Phase 17
1.8 Why There Is No Documentation Phase 18
1.9 The Object-Oriented Paradigm 18
1.10 Terminology 20
1.11 Ethical Issues 24
Chapter Review 25
For Further Reading 25
Key Terms 26
E I
References 28
Chapter 2
Software Life-Cycle Models 32
23] B 32
2.1 Software Development in Theory 32
2.2 Winburg Mini Case Study 33
2.3 Lessons of the Winburg Mini Case Study 37
2.4 Teal Tractors Mini Case Study 37
2.5 lteration and Incrementation 38
2.6 Winburg Mini Case Study Revisited 42
2.7 Risks and Other Aspects of Iteration

and Incrementation 43

2.8 Managing Iteration and Incrementation 46
2.9 Other Life-Cycle Models 47
2.9.1 Code-and-Fix Life-Cycle Model 47
2.9.2 Waterfall Life-Cycle Model 48
2.9.3 Rapid-Prototyping Life-Cycle
Model 50
2.9.4 Open-Source Life-Cycle Model 51
2.9.5 Agile Processes 54
2.9.6 Synchronize-and-Stabilize
Life-Cvcle Model 57
2.9.7 Spiral Life-Cycle Model 57
2.10 Comparison of Life-Cycle Models 61
Chapter Review 62
For Further Reading 63
Key Terms 64
] o 64
References 65
Chapter 3
The Software Process 68
%2 Hbg 68
3.1 The Unified Process 70
3.2 Iteration and Incrementation 72
3.3 The Requirements Workflow 73
3.4 The Analysis Workflow 74
3.5 The Design Workflow 76
3.6 The Implementation Workflow 77
3.7 The Test Workflow 78
3.7.1 Requirements Artifacts 78
3.7.2 Analysis Artifacts 79
3.7.3 Design Artifacts 79
3.7.4 Implementation Artifacts 79
3.8 Postdelivery Maintenance 81
3.9 Retirement 82
3.10 The Phases of the Unified Process 82
3.10.1 The Inception Phase 83
3.10.2 The Elaboration Phase 85
3.10.3 The Construction Phase 86
3.10.4 The Transition Phase 86
3.11 One- versus Two-Dimensional Life-Cycle
Models 87
3.12 Improving the Software Process 89
3.13 Capability Maturity Models 89

xii Contents

3.14 Other Software Process Improvement
Initiatives 92

3.15 Costs and Benefits of Software Process
Improvement 93
Chapter Review 95
For Further Reading 95
Key Terms 96
3 m 97

References 97

Chapter 4
Teams 101

2] 101
4.1 Team Organization 101
4.2 Democratic Team Approach 103
4.2.1 Analysis of the Democratic Team
Approach 104
4.3 Chief Programmer Team Approach 104
4.3.1 The New York Times Project 106
4.3.2 Impracticality of the Chief
Programmer Team Approach 107
4.4 Beyond Chief Programmer and Democratic
Teams 107
4.5 Synchronize-and-Stabilize Teams 111
4.6 Teams for Agile Processes 112
4.7 Open-Source Programming Teams 112
4.8 People Capability Maturity Model 113
4.9 Choosing an Appropriate Team
Organization 114
Chapter Review 115
For Further Reading 115
Key Terms 115
Problems 116

51 m o116

Chapter 5
The Tools of The Trade 118

21 BhR 118
5.1 Stepwise Refinement 118
5.1.1 Stepwise Refinement Mini
Case Study 119
5.2 Cost-Benefit Analysis 124
5.3 Software Metrics 126
5.4 CASE 127

5.5
5.6
57

58

59
5.10

6.1

6.2

6.3
6.4

6.5

Taxonomy of CASE 128

Scope of CASE 130

Software Versions 133

5.7.1 Revisions 134

5.7.2 Variations 134

Configuration Control 135

5.8.1 Configuration Control during
Postdelivery Maintenance 137

5.8.2 Baselines 138

5.8.3 Configuration Control during
Development 138

Build Tools 138

Productivity Gains with CASE

Technology 139

Chapter Review 141

For Further Reading 141

Key Terms 141

5| moo142

References 143

Chapter 6
Testing

145

S IEL S 145

Quality Issues 146

6.1.1 Software Quality Assurance 147

6.1.2 Managerial Independence 147

Non-Execution-Based Testing 148

6.2.1 Walkthroughs 149

6.2.2 Managing Walkthroughs 149

6.2.3 Inspections 150

6.2.4 Comparison of Inspections and

Walkthroughs 152

Strengths and Weaknesses of

Reviews 153

6.2.6 Metrics for Inspections 153

Execution-Based Testing 153

What Should Be Tested? 154

6.4.1 Utlity 155

6.4.2 Reliability 155

6.4.3 Robustness 156

6.4.4 Performance 156

6.4.5 Correctness 157

Testing versus Correctness Proofs 158

6.5.1 Example of a Correctness Proof 158

6.5.2 Correctness Proof Mini Case
Study 162

6.2.5

6.6

6.7

6.5.3 Correctness Proofs and Software
Engineering 163

Who Should Perform Execution-Based

Testing? 166

When Testing Stops 167

Chapter Review 167

For Further Reading 168

Key Terms 168

5| o169

References 170

Chapter 7
From Modules to Objects 173

7.1
7.2

7.3

7.4

7.5
7.6
77
7.8

7.9

2 Hbr 173
What Is a Module? 174
Cohesion 176

7.2.1 Coincidental Cohesion 177
7.2.2 Logical Cohesion 178

7.2.3 Temporal Cohesion 178

7.24 Procedural Cohesion 179

7.2.5 Communicational Cohesion 179
7.2.6 Functional Cohesion 180

7.2.7 Informational Cohesion 180

b
-

2.8 Cohesion Example 181

Coupling 181

7.3.1 Content Coupling 182

7.3.2 Common Coupling 183

7.3.3 Control Coupling 185

7.3.4 Stamp Coupling 185

7.3.5 Data Coupling 186

7.3.6 Coupling Example 187

7.3.7 The Importance of Coupling 188

Data Encapsulation 189

7.4.1 Data Encapsulation and
Development 191

74.2 Data Encapsulation and
Maintenance 192

Abstract Data Types 197

[nformation Hiding 199

Objects 201

[nheritance. Polymorphism, and Dynamic

Binding 205

The Object-Oriented Paradigm 207

Chapter Review 210

For Further Reading 211

Key Terms 211

Contents xiil

(]

1 w21

References 212

Chapter 8
Reusability and Portability 215

2] A bR 215
8.1 Rcuse Concepts 216
8.2 Impediments to Reuse 218
8.3 Reuse Case Studies 219
8.3.1 Ravtheon Missile Systems
Division 220
8.3.2 European Space Agency 221
8.4 Objects and Reuse 222
8.5 Reuse during Design and
Implementation 222

Design Reuse 222

8.5.2 Application Frameworks 224

8.5.3 Design Patterns 224
8.5.4 Software Architecture 226
8.5.5 Component-Based Software
Engineering 227
8.6 More on Design Patterns 227
8.6.1 FLIC Mini Case Study 228
8.6.2 Adapter Design Pattern 229
8.6.3 Bridge Design Pattern 230
8.6.4 lterator Design Pattern 233
8.6.5 Abstract Factory Design Pattern
8.7 Categories of Design Patterns 235
8.8 Strengths and Weaknesses of Design
Patterns 237
8.9 Reuse and Postdelivery Maintenance
8.10 Portability 239
8.10.1 Hardware Incompatibilities
8.10.2 Operating System
Incompatibilities 240
8.10.3 Numerical Software
Incompatibilities 241

233

238

239

8.10.4 Compiler Incompatibilities 241

8.11 Why Portability? 244
8.12 Techniques for Achieving Portability

245
8.12.1 Portable System Software 246

8.12.2 Portable Application Software 246

8.12.3 Portable Data 247

8.12.4 Web-Based Applications 248

Chapter Review 249
For Further Reading 249

xiv Contents

Key Terms 250
2] o 250
References 252

260
263

Chapter 9
Planning and Estimating 256
#2] Bir 256
9.1 Planning and the Software Process 257
9.2 Estimating Duration and Cost 258
9.2.1 Metrics for the Size of a Product
9.2.2 Techniques of Cost Estimation
9.2.3 Intermediate COCOMO 265
9.24 Ccocomo Il 269
9.2.5 Tracking Duration and Cost
Estimates 270
9.3 Estimation Issues 270
9.4 Components of a Software Project
Management Plan 271
9.5 Software Project Management Plan
Framework 272
9.6 IEEE Software Project Management
Plan 274
9.7 Planning Testing 277
9.8 Training Requirements 278
9.9 Documentation Standards 279
9.10 CASE Tools for Planning and
Estimating 279
9.11 Testing the Software Project
Management Plan 280
Chapter Review 280
For Further Reading 280
Key Terms 281
b | 282
References 283
PART TWO
THE WORKFLOWS OF THE

SOFTWARE LIFE CYCLE 286

Chapter 10
The Requirements Workflow 287

10.1

21 Bin 287

Determining What the Client Needs

288

1.1
11.2
1.3

10.2 Overview of the Requirements
Workflow 289

10.3 Understanding the Domain 289

10.4 The Business Model 290
10.4.1 Interviewing 290
10.4.2 Other Techniques 291
10.4.3 Use Cases 292

10.5 Initial Requirements 293

10.6 Initial Understanding of the Domain:
The MSG Foundation Case Study 294

10.7 Initial Business Model: The MSG
Foundation Case Study 297

10.8 Initial Requirements: The MSG Foundation
Case Study 300

10.9 Continuing the Requirements Workflow:
The MSG Foundation Case Study 302

10.10 Revising the Requirements: The MSG
Foundation Case Study 304

10.11 The Test Workflow: The MSG Foundation
Case Study 312

10.12 What Are Object-Oriented
Requirements? 321

10.13 Rapid Prototyping 321

10.14 Human Factors 322

10.15 Reusing the Rapid Prototype 324

10.16 CASE Tools for the Requirements
Workflow 324

10.17 Metrics for the Requirements
Workflow 325

10.18 Challenges of the Requirements
Workflow 325
Chapter Review 327
For Further Reading 327
Key Terms 327
Case Study Key Terms 328
B | a5 328
References 329

Chapter 11

The Analysis Workflow 331

21 Bbr 331

The Specification Document 332
Informal Specifications 333
Correctness Proof Mini Case Study
Redux 334

11.4
11.5
11.6
1.7

11.10

1.1

11.12

11.13

11.14

11.15

11.16

11.17

11.18

11.19

11.20

11.21

11.22

11.23
11.24

The Analysis Workflow 335
Extracting the Entity Classes
The Elevator Problem 338
Functional Modeling: The Elevator
Problem Case Study 338

Entity Class Modeling: The Elevator
Problem Case Study 340
11.8.1 Noun Extraction
11.8.2 CRC Cards 343
Dynamic Modeling: The Elevator Problem
Case Study 344

The Test Workflow: The Elevator Problem
Case Study 347

Extracting the Boundary and Control

Classes 351

The Initial Functional Model: The MSG
Foundation Case Study 352

The Initial Class Diagram: The MSG
Foundation Case Study 354

The Initial Dynamic Model: The MSG
Foundation Case Study 357

Revising the Entity Classes: The MSG
Foundation Case Study 359

Extracting the Boundary Classes: The
MSG Foundation Case Study 360
Extracting the Control Classes: The MSG
Foundation Case Study 361

Use-Case Realization: The MSG
Foundation Case Study 362

11.18.1 Estimate Funds Available for Week
Use Case 362

Manage an Asset Use Case
Update Estimated Annual
Operating Expenses Use
Case 373

11.18.4 Produce a Report Use Case
Incrementing the Class Diagram:
The MSG Foundation Case Study 380
The Software Project Management Plan:
The MSG Foundation Case Study 382
The Test Workflow: The MSG Foundation
Case Study 382

The Specification Document in the Unified
Process 382

More on Actors and Use Cases 383
CASE Tools for the Analysis Workflow 385

337

341

11.18.2 369

11.18.3

375

11.25

Contents xv

Challenges of the Analysis Workflow 385
Chapter Review 386
For Further Reading 386

Key Terms 387
Case Study Key Terms 387
2] i 387
References 389
Chapter 12
The Design Workflow 392
21 Hbr 392
12.1 Object-Oriented Design 393
12.2 Object-Oriented Design: The Elevator
Problem Case Study 397
12.3 Object-Oriented Design: The MSG
Foundation Case Study 400
12.4 The Design Workflow 402
12.5 The Test Workflow: Design 404
12.6 The Test Workflow: The MSG Foundation
Case Study 405
12.7 Formal Techniques for Detailed Design 405
12.8 Real-Time Design Techniques 406
129 CASE Tools for Design 407
12.10 Metrics for Design 408
12.11 Challenges of the Design Workflow 409
Chapter Review 410
For Further Reading 410
Key Terms 411
] o411
References 412
Chapter 13
The Implementation Workflow 414
21 Bbr 414
13.1 Choice of Programming Language 414
13.2 Good Programming Practice 417

13.2.1 Use of Consistent and Meaningful
Variable Names 417

The Issue of Self-Documenting
Code 418

Use of Parameters 420

Code Layout for Increased
Readability 421
Nested if Statements

13.2.2

13.2.3
13.2.4

13.2.5 421

xvi Contents

13.3 Coding Standards 422 13.23.3 Environments for Business
13.4 Code Reuse 423 Applications 452
13.5 Integration 423 13.23.4 Public Tool Infrastructures 452
13.5.1 Top-down Integration 424 13.23.5 Potential Problems with
13.5.2 Bottom-up Integration 426 Environments 452
13.5.3 Sandwich Integration 426 13.24 CASE Tools for the Test Workflow 453
13.5.4 Integration Techniques 428 13.25 Metrics for the Implementation
13.5.5 Management of Integration 428 Workflow 453
13.6 The Implementation Workflow 429 13.26 Challenges of the Implementation
13.7 The Implementation Workflow: The MSG Workflow 454
Foundation Case Study 429 Chapter Review 455
13.8 The Test Workflow: Implementation 429 For Further Reading 455
13.9 Test Case Selection 430 Key Terms 456
13.9.1 Testing to Specifications versus > o 457
Testing to Code 430 References 459
13.9.2 Feasib‘ilir)' of Testing to Chapter 14
~ Specifications 430 Postdelivery Maintenance 462
13.9.3 Feasibility of Testing to Code 431
13.10 Black-Box Unit-Testing Techniques 433 EREL 7N 462
13.10.1 Equivalence Testing and Boundary 14.1 Development and Maintenance = 462
Value Analvsis 434 14.2 Why Postdelivery Maintenance Is
13.10.2 Functional Testing 435 Necessary 464
13.11 Black-Box Test Cases: The MSG 14.3 What Is Required of Postdelivery
Foundation Case Study 436 Maintenance Programmers? 465
13.12 Glass-Box Unit-Testing Techniques 436~ 14.4 Postdelivery Maintenance Mini Case
13.12.1 Structural Testing: Statement, Study 467
Branch, and Path Coverage 438 14.5 Management of Postdelivery
13.12.2 Complexity Metrics 440 Maintenance 468
13.13 Code Walkthroughs and Inspections 441 14.5.1 Defect Reports 468
13.14 Comparison of Unit-Testing 14.5.2 Authorizing Changes to the
Techniques 441 Product 469
13.15 Cleanroom 442 14.5.3 Ensuring Maintainabiliry 470
13.16 Testing Issues 443 14.5.4 Problem of Repeated
13.17 Management Aspects of Unit Testing = 445 Maintenance 471
13.18 When to Rewrite Rather than Debug a 14.6 Maintenance Issues 471
Code Artifact 446 14.7 Postdelivery Maintenance Skills versus
13.19 Integration Testing 447 Development Skills - 474
13.20 Product Testing 448 14.8 Reverse Engineering 474
13.21 Acceptance Testing 449 14.9 Testing during Postdelivery
13.22 The Test Workflow: The MSG Foundation Maintenance 475
Case Study 450 14.10 CASE Tools for Postdelivery
13.23 CASE Tools for Implementation 450 Maintenance 476
13.23.1 CASE Tools for the Complete 14.11 Metrics for Postdelivery Maintenance 477
Software Process 450 14.12 Postdelivery Maintenance: The MSG
13.23.2 Integrated Development Foundation Case Study 477
Environments 451 14.13 Challenges of Postdelivery

Maintenance 477

