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Preface

Special relativity and quantum mechanics are likely to remain the two most
important languages in physics for many years to come. The underlying language
for both disciplines is group theory. Eugene P. Wigner’s 1939 paper on the Unitary
Representations of the Inhomogeneous Lorentz Group laid the foundatian for
unifying the concepts and algorithms of quantum mechanics and special relativity.
In view of the strong current interest in the space-time symmetries of elementary
particles, it is safe to say that Wigner’s 1939 paper was fifty years ahead of its time.
This edited volume consists of Wigner’s 1939 paper and the major papers on the
Lorentz group published since 1939.

This volume is intended for graduate and advanced undergraduate students in
physics and mathematics, as well as mature physicists wishing to understand the
more fundamental aspects of physics than are available from the fashion-oriented
theoretical models which come and go. The original papers contained in this
volume are useful as supplementary reading material for students in courses on
group theory, relativistic quantum mechanics and quantum field theory, relativistic
electrodynamics, general relativity, and elementary particle physics.

This reprint collection is an extension of the textbook by the present.gdjtors entitled
““Theory and Applications of the Poincaré Group.’’ Since this book is largely
based on the articles contained herein, the present volume should be viewed as a
continuation of and supplementary reading for the previous work.

We would like to thank Professors J. Bjorken, R. Feynman, R..Hofstadter, J.
Kuperzstych, L. Michel, M. Namiki, L.Parker, S. Weinberg, E.P. Wigner, A.S.
Wightman, and Drs. P. Hussar, M. Ruiz, F. Rotbart, and B. Yurke for allowing us to
reprint their papers. We are grateful to Mrs. M. Dirac and Mrs. S. Yukawa for
giving us permission to reprint the articles of Professors P.A.M. Dirac and H.
Yukawa respectively.

We wish to thank the Annals of Mathematics for permission to reprint Professor
Wigner’s- historic paper. We thank the American Physical Socrcty, the American
Association of Physics Teachers, The Royal Society of London, il Nuovo Cimento
and Progress in Theorectical Physics for permission to reprint the articles which
appeared in their journals and for which they hold the copyright. The excerpt from
Albert Einstein: Historical and Cultural Perspective: The Centennial Symposium in
Jerusalem is reprinted with permission of Princeton University Press; that from

ix
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High Energy Collisions is reprinted with permission of Gordon and Breach Science
publisher, Inc. and that from Aspects of Quantum Theory with permission of
Cambridge University Press.



Introduction

One of the most fruitful and still promising approaches to unifying quantum
mechanics and special relativity has been and still is the covariant formulation of
quantum field theory. The role of Wigner’s work on the Poincar€ group in quantum
field theory is nicely summarized in the fourth paragraph of an article by V.
Bargmann et al. in the commemorative issue of the Reviews of Modern Physics in
honor of Wigner’s 60th birthday [Rev. Mod. Phys. 34, 587 (1962)], which
concludes with the sentences:

‘“Those who had carefully read the preface of Wigner's great

1939 paper on relativistic invariance and had understood the

physical ideas in his 1931 book on group theory and atomic

spectra were not surprised by the tum of events in quantum field

theory in the 1950’s. A fair part of what happened was merely a
matter of whipping quantum field theory into line with the

insights achieved by Wigner in 1939"".

It is important to realize that quantum field theory has not been and is not at present
the only theoretical machine with which physicists attempt to unify quantum
mechanics and special relativity. Indeed, Dirac devoted much of his professional
life to this important task, but, throughout the 1950’s and 1960’s, his form of
relativistic quantum mechanics was overshadowed by the success of quantum field
theory. However, in the 1970’s, when it was necessary to deal with quarks confined
permanently inside hadrons, the limitations of the present form of quantum field
theory become apparent. Currently, there are two different opinions on the
difficulty of using field theory in dealing with bound-state problems or systems of
confined quarks. One of these regards the present difficulty merely as a
complication in calculation. According to this view, we should continue developing
mathematical techniques which will someday enable us to formulate a bound-state
problem with satisfactory solutions within the framework of the existing form of
quantum field theory. The opposing opinion is that quantum field theory is a model
that can handle only scattering problems in which all particles can be brought to
free-particle asymptotic states. According to this view we have to make a fresh start
for relativistic bound-state problems.

These two opposing views are not mutually exclusive.. Bound-state models
developed in these two different approaches should have the same space-time
symmetry. It is quite possible that independent bound-state models, if successful in

xi



xii Introduction

explaining what we see in the real world, will eventually complement field theory.

One of the purposes of this book is to present the fundamental papers upon which a

relativistic bound-state model that can explain basic hadronic features observed in

high-energy laboratories could be build in accordance with the principles laid out by
. Wigner in 1939.

Wigner observed in 1939 that Dirac’s electron has an SU(2)-like internal space-time

, Symmetry. However, quarks and hadrons were unknown at that time. Dirac’s form
of relativistic bound-state quantum mechanics, which starts from the representations
of the Poincaré group, makes it possible to study the O(3)-like little group for
massive particles and leads to hadronic wave functions which can describe fairly
accurately the distribution of quarks inside hadrons. Thus a substantial portion of
hadronic physics can be incorporated into the O(3)-like little group for massive
particles.

Another important development in modern physics is the extensive use of gauge
transformations in connection with massless particles and their interactions.
Wigner’s 1939 paper has the original discussion of space-time symmetries of
massless particles. However, it was only recently recognized that gauge-dependent
electromagnetic four-potentials form the basis for a finite-dimensional non-unitary
representation of the little group of the Poincaré group. This enables us to associate
gauge degrees of freedom with the degrees of frecdom left unexplained in Wigner’s
work. Hence it is possible to impose a gauge condition on the electromagnetic
four-potential to construct a unitary representation of the photon polarization
vectors. '

Wigner showed that the internal space-time symmetry group of massless particles is
locally isomorphic to the Euclidian group in two-dimensional space. However,
Wigner did not explore the content of this isomorphism, because the physics of the
translation-like transformations of this little group was unknown in 1939. Neutrinos
were known only as ‘‘Dirac electrons without mass’’, although photons were known

_to have spins either parallel or antiparallel to their respective momenta. We now
know the physics of the degrees of freedom left unexplained in Wigner’s paper.
Much more is also known about neutrinos today that in 1939. For instance, it is
firmly established that neutrinos and anti-neutrinos are left and right handed
respectively. Therefore, it is possible to discuss internal space-time symmetries of
massless particles starting from Wigner’s E(2)-like little group. Recently, it was
observed that the O(3)-like little group becomes the E(2)-like group in the limit of
small mass and/or large momentum.

Indeed, group theory has become the standard language in physics. Until the
1960’s, the only group known to the average physicist had been the three-
dimensional rotation group. Gell-Mann’s work on the quark model encouraged
physicists to study the unitary groups, which are compact groups. The Weinberg-
Salam model enhanced this trend. The emergence of supersymmetry in the 1970’s
has brought the space-time group closer to physicists. These groups are non-
compact, and it is difficult to prove or appreciate mathematical theorems for them.
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The Poincar€ group is a non-compact group. Fortunately, the representations of this
group useful in physics are not complicated from the mathematical point of view.

The application of the Lorentz group is not restricted to the symmetries of
elementary particles. The (2 + 1)-dimensional Lorentz group is isomorphic to the
two-dimensional symplectic group, which is the symmetry group of homogeneous
linear canonical transformations in classical mechanics. It is also useful for
studying coherent and squeezed states in optics. It is likely that the Lorentz group
will serve useful purposes in many other branches of modern physics.

This reprint volume contains the fundamental paper by Wigner, and the papers on
applications of his paper to physical problems. This book starts with Wigner’s
review paper on relativistic invariance and quantum phenomena. The reprinted
papers are grouped into nine chapters. Each chapter starts with a brief introduction.
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Chapter I

Perspective View of Quantum Space-Time Symmetries

When Einstein formulated his special theory of relativity in 1905, quantum
mechanics was not known. Einstein’s original version of special relativity deals
with point particles without space-time structures and extension. These days, we
know that elementary particles can have intrinsic space-time structure manifested by
spins. In addition, many of the particles which had been thought to be point
particles now have space-time extensions.

The hydrogen atom was known to be a composite particle in which the electron
maintains a distance from the proton. Therefore, the hydrogen atom is not a point
particle. The proton had been regarded as a point particle until, in 1955, the
experiment of Hofstadter and McAllister proved otherwise. These days, the proton
is a bound state of more fundamental particles called the quarks. We still do not
know whether the quarks have non-zero size, but assume that they are point
particles. We assume also that electrons are point particles. However, it is clear
that these particles have intrinsic spins. The situation is the same for massless
particles. For intrinsic spins, the Wigner’s representation of the Poincaré group is
the natural scientific language.

As for nonrelativistic extended particles, such as the hydrogen atom, the present
form of quantum mechanics with the probability interpretation is quite adequate. If
the proton is a bound state of quarks within the framework of quantum mechanics,
the description of a rapidly moving proton requires a Lorentz transformation of
localized probability distribution. In addition, this description should find its place in
Wigner’s representation theory of the Poincaré group.

This Chapter consists of one article by Wigner on relativistic invariance of quantum
phenomena, and one article by Dirac. As he said in his 1979 paper, Dirac was
concerned with the problem of fitting quantum mechanics in with relativity, right
from the beginning of quantum mechanics. Dirac suggests that the ideal mechanics
should be both relativistic and deterministic. It would be too ambitious to work with
both the relativistic and deterministic problem at the same time. Perhaps the easier
way is to deal with one aspect at a time. Then there are two routes to the ideal
mechanics, as are illustrated in Figuie 1. The current literature indicates that it
would be easier to make quantum mechanics relativistic than deterministic. In this
book, we propose to study the easier problem first.

1
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Relativistic Ideal
Quantum Mech. * Mechanics
o
v . ,
= Poincare
5 Group
Q
('
Quantum Mech. Y Ouanfum .M'ech.
Present Form | Deterministic | Deterministic

FIG. 1. Two different routes to the ideal mechanics. Covariance and determinism are
the two main problems. In approaching these problems, there are two different

routes. In either case, the Poincar€ group is likely to be the main scientific language.



PERSPECTIVE VIEW OF QUANTUM SPACE-TIME SYMMETRIES

Reprinted from Reviews oF Mopexx Puysics, Vol 29, No. 3, 255-268, July, 1957
Prioted in U. S. A

Relativistic Invariance and Quantum Phenomena*

EUGENE P. WIGNER

Palmer Physical Laboratory, Princeton Universily, Princeton, New Jersey

INTRODUCTION

HE principal theme of this discourse is the great

difference between the relation of special relativ-
ity and quantum theory on the one hand, and general
relativity and quantum theory on the other. Most of
the conclusions which will be reported on in connection
with the general theory have been arrived at in col-
laboration with Dr. H. Salecker,' who has spent a
year in Princeton to investigate this question.

The difference between the two relations is, briefly,
that while there are no conceptual problems to separate
the theory of special relativity from quantum theory,
there is hardly any common ground between the general
theory of relativity and quantum mechanics. The
statement, that there are no conceptual conflicts
between quantum mechanics and the special theory,
should not mean that the mathematical formulations
of the two theories naturally mesh. This is not the case,
and it required the very ingenious work of Tomonaga,
Schwinger, Feynman, and Dyson® to adjust quantum
mechanics to the postulates of the special theory and
this was so far successful only on the working level.
What is meant is, rather, that the concepts which are
used in quantum mechanics, measurements of positions,
momenta, and the like, are the same concepts in terms
of which the special relativistic postulate is formulated.
Hence, it is at least possible to formulate the require-
ment of special relativistic invariance for quantum
theories and to ascertain whether these requirements
are met. The fact that the answer is more nearly no
than yes, that quantum mechanics has not yet been
fully adjusted to the postulates of the special theory,

® Address of retiring president of the American Physical
Society, January 31, 1957.

! This will be reported jointly with H. Salecker in more detail
in another journal.

?See, e.g., J. M. Jauch and F. Rohrlich, The Theory of Protons

?;:S)H«hw (Addison-Wesley Press, Cambridge, Massachusetts,

is perhaps irritating. It does not alter the fact that the
question of the consistency of the two theories can at
least be formulated, that the question of the special
relativistic invariance of quantum mechanics by now
has more nearly the aspect of a puzzle than that of a
problem.

This is not so with the general theory of relativity.
The basic premise of this theory is that coordinates
are only auxiliary quantities which can be given
arbitrary values for every event. Hence, the measure-
ment of position, that is, of the space coordinates, is
certainly not a significant measurement if the postulates
of the general theory are adopted: the coordinates can
be given any value one wants. The same holds for
momenta. Most of us have struggled with the problem
of how, under these premises, the general theory of
relativity can make meaningful statements and predic-
tions at all. Evidently, the usual statements about
future positions of particles, as specified by their
coordinates, are not meaningful statements in general
relativity. This is a point which cannot be emphasized
strongly enough and is the basis of a much deeper
dilemma than the more technical question of the
Lorentz invariance of the quantum field equations.
It pervades all the general theory, and to some degree
we mislead both our students and ourselves when we
calculate, for instance, the mercury perihelion motion
without explaining how our coordinate system is fixed
in space, what defines it in such a way that it cannot
be rotated, by a few seconds a year, to follow the
perihelion’s apparent motion. Surely the x axis of our
coordinate system could be defined in such a way that
it pass through all successive perihelions. There must
be some assumption on the nature of the coordinate
system which keeps it from following the perihelion.
This is not difficult to exhibit in the case of the motion
of the perihelion, and it would be useful to exhibit it.
Neither is this, in general, an academic point, even

255
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though it may be academic in the case of the mercury
perihelion. A difference in the tacit assumptions which
fix the coordinate system is increasingly recognized to
be at the bottom of many conflicting results arrived at
in calculations based on the general theory of relativity.
Expressing our results in terms of the values of co-
ordinates became a habit with us to such a degree that
we adhere to this habit aiso in general relativity where
values of coordinates are not per se meaningful. In
order to make them meaningful, the mollusk-like
coordinate system must be somehow anchored to
space-time events and this anchoring is often done with
little explicitness. If we want to put general relativity
on speaking terms with quantum mechanics, our first
task has to be to bring the statements of the general
theory of relativity into such form that they conform
with the basic principles of the general relativity theory
itself. It will be shown below how thismay be attempted.

RELATIVISTIC QUANTUM THEOR. OF ELEMENTARY
SYSTEMS

The relation between special theory and quantum
mechanics is most simple for single particles. The
equations and properties of these, in the absence of
interactions, can be deduced alreudy from relativistic
invariance. Two cases have to be distinguished: the
particle either can, or cannot, be transformed to rest.
If it can, it will behave, in that coordinate system,
as any other particle, such as an atom. It will have an
intrinsic angular momentum called J in the case of
atoms and spin S in the case of elementary patticles.
This leads to the various possibilities with which we
are familiar from spectroscopy, that is spins 0, 4, 1,
3, 2, -+ each corresponding to a type of particle.
If the particle cannot be transformed to rest, its
velocity must always be equal to the velocity of light.
Every other velocity can be transformed to rest. The
rest-mass of these particles is zero because a nonzero
rest-mass would entail an infinite energy if moving
with light velocity.

Particles with zero rest-mass have only two directions
of polarization, no matter how large their spin is. This
contrasts with the 25+ 1 directions of polarization for
particles with nonzero rest-mass and spin S. Electro-
magnetic radiation, that is, light, is the most familiar
example for this phenomenon. The “spin” of light is 1,
but it has only two directions of polarization, instead
of 25+1=3. The number of polarizations seems to
jump discontinuously to two when the rest-mass
decreases and reaches the value 0. Bass and Schrodinger®
followed this out in detail for electromagnetic radiation,
that is, for S=1. It is g-od to realize, however, that
this decrease in the number of possible polarizations is
purely a property of the Lorentz transformation and
holds for any value of the spin.

There is nothing fundamentally new that can be said

(v'l.ji;:nd E. Schrodinger, Proc. Roy. Soc. (London) A232, 1
1955).

WIGNER

about the number of polarizations of a particle and the
principal purpose of the following paragraphs is to
illuminate it from a different point of view.* Instead of
the question: “Why do particles with zero rest-mass
have only two directions of polarization?” the slightly
different question, “Why do particles with a finite
rest-mass have more than two directions of polariza-
tion?” is proposed.

The intrinsic angular momentum of a particle with
zero rest-mass is parallel to its direction of motion,
that is, parallel to its velocity. Thus, if we connect
any internal motion with the spin, this is perpendicular
to the velocity. In case of light, we speak of transverse
polarization. Furthermore, and this is the salient point,
the statement that the spin is parallel to the velocity
is a relativistically invariant statement: it holds as
well if the particle is viewed from a moving coordinate
system. If the problem of polarization is regarded from
this point of view, it results in the question, “Why
can’t the angular momentum of a particle with finite
rest-mass be parallel to its velocity?” or “Why can’t
a plane wave represent transverse polarization unless
it propagates with light velocity?”’ The answer is that
the angular momentum can very well be parallel to
the direction of motion and the wave can have trans-
verse polarization, but these are not Lorentz invariant
statements. In other words, even if velocity and spin
are parallel in one coordinate system, they do not
appear to be parallel in other coordinate systems.
This is most evident if, in this other coordinate system,
the particle is at rest: in this coordinate system the

A(O,¢p) Rr(3) A(0,9)

“A

R(I)

A3, )R ()

F1c. 1. The short simple arrows illustrate the spin, the double
arrows the velocity of the pnniclc. One obtains the same state,
no matter whether one first im to it a velocity in the direction
of the spin, then rotates it R(9)A(0,¢)), or whether one first
rotates it, then gives a velocity in the direction of the spin
(A (9,9)R(9)). See Eq. (1.3).
¢ The essential point of the argument which follows is contained
in the present writer’s paper, Ann. Math. 40, 149 (1939) and more
explicitly in his address at the Jubilee of Relativity Theory,
Bern, 1955 (Birkhauser Verlag, Basel, 1956), A. Mercier and
M. Kervaire, editors, p. 210.
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F16. 2, The particle is first given a small velocity in the direction
of its spin, then increasing velocities in a prependicular direction
(uppe‘:‘lrrt of the figure). The direction of the spin remains
essenl changed; it includes an increasingly large angle
with the veloclty as the velocity in the perpendicular direction
increases. If the velocity imparted to the particle is large (lower
part of the figure), the direction of the spin seems to follow the
direction of the velocity. See Eqs. (1.8) nnd (1.7).

INVARIANCE

angular momentum should be parallel to nothing.
However, every particle, unless it moves with light
velocity, can be viewed from a coordinate system in
which it is at rest. In this coordinate system its angular
momentum is surely not parallel to its velocity.
Hence, the statement that spin and velocity are
parallel cannot be universally valid for the particle
with finite rest-mass and such a particle must have
other states of polarization also.

It may be worthwhile to illustrate this point some-
what more in detail. Let us consider a particle at rest
with a given direction of polarization, say the direction
of the £ axis. Let us consider this particle now from a
coordinate system which is moving in the —z direction.
The particle will then appear to have a velocity in the
z direction and its polarization will be parallel to its
velocity (Fig. 1). It will now be shown that this last
statement is nearly invariant if the velocity is high.
It is evident that the statement is entirely invariant
with respect to rotations and with respect to a further

increase of the velocity in the g direction. This is "

illustrated at the bottom of the figure. The coordinate
system is first turned to the left and then given a
velocity in the direction opposite to the old s axis.
The state of the system appears to be exactly the same
as if the coordinate system had been first given a
velocity in the —z direction and then turned, which is
the operation illustrated at the top of the figure. The
state of the system appears to be the same not for any
physical reason but because the two coordinate systems
are identical and they view the same particle (see
Appendix I).

Let us now take our particle with a high velocity in
the z direction and view it from a coordinate system
which moves in the — y direction. The particle now will
appear to have a momentum also in the y direction, its
velocity will have a direction betyeen the y and =
axes (Fig. 2). Its spin, however, will not be in the
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direction of its motion any more. In the nonrelativistic
case, that is, if all velocities are small as compared with
the velocity of light, the spin will still be parallel to z
and it will, therefore, enclose an angle with the particle’s
direction of motion. This shows that the statement that
the spin is parallel to the direction of motion is not
invariant in the nonrelativisitic region. However, if
the original velocity of the particle is close to the light
velocity, the Lorentz contraction works out in such a
way that the angle between spin and velocity is given by

tan (angle between spin and velocity)

=(1—-2/c*)Vsingd, (1)
where ¢ is the angle between the velocity v in the
moving coordinate system and the velocity in the
coordinate system at rest. This last situation is illus-
trated at the bottom of the figure. If the velocity of
the particle is small as compared with the velocity
of light, the direction of the spin remains fixed and is
the same in the moving coordinate system as in the
coordinate system at rest. On the other hand, if the
particle’s velocity is close to light velocity, the velocity
carries the spin with itself and the angle between
direction of motion and spin direction becomes very
small in the moving coordinate system. Finally, if the
particle has light velocity, the statement ‘“‘spin and
velocity are parallel” remains true in every coordinate
system. Again, this is not a consequence of any physical
property of the spin, but is a consequence of the
properties of Lorentz transformations: it is a kind of
Lorentz contraction. It is the reason for the different
behavior of particles with finite, and particles with
2ero, rest-mass, as far as the number of states of
polaruatmn is concerned. (Details of the mlculnmn
are in Appendix 1.)

The preceding consideration proves more than was
intended: it shows that the statement “spin and
velocity are parallel for zero mass particles” is invariant
and that, for relativistic reasons, one needs only one
state of polarization, rather than fwo. This is true as
far as proper Lorentz transformations are concerned.
The second stote of polarization, in which spin and
velocity are antiparallel, is a result of the reflection
symmetry. Again, this can be illustrated on the example
of light: right circularly polarized light appears as
right circularly polarized light in all Lorentz frames of
reference which can be continuously transformed into
each other. Only if one looks at the right circularly
polarized light in a mirror does it appear as left
circularly polarized light. The postulate of reflection
symmetry allows us to infer the existence of left
circularly polarized light from the existence of right
circularly polarized light—if there were no such
reflection symmetry in the real world, the existence
of fwo modes of polarization of light, with virtuaily
identical properties, would appear to be a miracle.
The situation is entirely different for particies with



