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1

Introduction

Modern wireless sensor networks are made up of a large number of inexpensive devices that
are networked via low power wireless communications. It is the networking capability that
fundamentally differentiates a sensor network from a mere collection of sensors, by enabling
cooperation, coordination, and collaboration among sensor assets. Harvesting advances in
the past decade in microelectronics, sensing, analog and digital signal processing, wireless
communications, and networking, wireless sensor network technology is expected to have
a significant impact on our lives in the twenty-first century. Proposed applications of sensor
networks include environmental monitoring, natural disaster prediction and relief, homeland
security, healthcare, manufacturing, transportation, and home appliances and entertainment.
Sensor networks are expected to be a crucial part in future military missions, for example,
as embodied in the concepts of network centric warfare and network-enabled capability.

Wireless sensor networks differ fundamentally from general data networks such as the
internet, and as such they require the adoption of a different design paradigm. Often sensor
networks are application specific; they are designed and deployed for special purposes.
Thus the network design must take into account the specific intended applications. More
fundamentally, in the context of wireless sensor networks, the broadcast nature of the
medium must be taken into account. For battery-operated sensors, energy conservation is
one of the most important design parameters, since replacing batteries may be difficult or
impossible in many applications. Thus sensor network designs must be optimized to extend
the network lifetime. The energy and bandwidth constraints and the potential large-scale
deployment pose challenges to efficient resource allocation and sensor management. A gen-
eral class of approaches — cross-layer designs — has emerged to address these challenges.
In addition, a rethinking of the protocol stack itself is necessary so as to overcome some
of the complexities and unwanted consequences associated with cross-layer designs.

This edited book focuses on theoretical aspects of wireless sensor networks, aiming
to provide signal processing and communication perspectives on the design of large-scale
sensor networks. Emphasis is on the fundamental properties of large-scale sensor networks,
distributed signal processing and communication algorithms, and novel cross-layer design
paradigms for sensor networking.

Wireless Sensor Networks: Signal Processing and Communications Perspectives A. Swami, Q. Zhao, Y.-W. Hong and L. Tong
© 2007 John Wiley & Sons, Ltd
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The design of a sensor network requires the fusion of ideas from several disciplines.
Of particular importance are the theories and techniques of distributed signal processing,
recent advances in collaborative communications, and methodologies of cross-layer design.

This book elucidates key issues and challenges, and the state-of-the-art theories and
techniques for the design of large-scale wireless sensor networks. For the signal processing
and communications research community, the book provides ideas and illustrations of the
application of classical theories and methods in an emerging field of applications. For
researchers and practitioners in wireless sensor networks, this book complements existing
texts with the infusion of analytical tools that will play important roles in the design of
future application-specific wireless sensor networks. For students at senior and the graduate
levels, this book identifies research directions and provides tutorials and bibliographies to
facilitate further investigations.

The book is divided into three parts: I Fundamental Properties and Limits; II Signal
Processing for Sensor Networks; and III Communications, Networking and Cross-Layer
Designs.

Part I Fundamental Properties and Limits

Despite the remarkable theoretical advances in link-level communications, scientific under-
standing of and design methodologies for large-scale complex networks, such as wireless
sensor networks, are still primitive. The variety of potential applications and sensor devices,
the dynamics and unreliability of the wireless communication medium, and the stringent
resource constraints all present major obstacles to a fundamental understanding of the
structure, behavior, and dynamics of large-scale possibly heterogeneous sensor networks.

Part I presents representative samples of recent developments in the discovery of fun-
damental properties and performance limits of large-scale sensor networks. The aim is to
show that despite the vast differences in applications and communication environments,
there exist universal laws and performance bounds, especially in the asymptotic regime,
that may lead to systematic approaches to the design of such large-scale complex networks.

Chapter 2 by Gastpar focuses on communication aspects: the rate and fidelity of trans-
porting sensor measurements to a fusion center for data processing. Based on a digital
communication architecture that separates source coding from channel coding, limits on
the achievable rate-distortion regions under power constraints are presented. Compelling
examples are given to illustrate the possible performance loss incurred by such a separated
design.

Chapter 3 by Giridhar and Kumar addresses in-network information processing. Instead
of transmitting measurements to a fusion center for processing, sensor nodes are responsible
for computing a certain function of all measurements, for example, the mean or the maxi-
mum, through inter-node communications. The quantities of interest are the maximum rate
at which such in-network computation can be performed and how it scales with network
size. Interestingly, the scaling behavior depends not only on the communication topology
of the network, but also on the properties of the function being calculated.

Chapter 4 by Negi, Rachlin, and Khosla is concerned with the fundamental relationship
between the number of sensor measurements and the ability of the network to identify
the state of the environment being monitored. The focus of the chapter is on detec-
tion problems where the number of possible hypotheses is large. For this problem of
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large-scale detection, a lower limit on the sensing capacity of sensor networks is derived
that characterizes the minimum rate at which the number of sensor measurements should
scale with the number of hypotheses in order to achieve the desired detection accuracy. An
intriguing analogy between the sensing capacity of sensor networks and channel coding
theory for communication channels points to the possibility of porting the large body of
results available on communication channels to the design of large-scale sensor networks.

The last chapter of Part I by Chen and Zhao focuses on the lifetime of sensor networks
to address the energy constraint. Given that the sensor network lifetime depends on network
architectures, specific applications, and various parameters across the entire protocol stack,
an accurate characterization of network lifetime as a function of key design parameters
is notably difficult to obtain. It is shown in this chapter that there is, in fact, a simple
law that governs the network lifetime for all applications (event-driven, clock-driven, or
query-driven), under any network configuration (centralized, ad hoc, or hierarchical). This
law of network lifetime reveals the key role of two physical layer parameters — residual
energy and channel state — and a general principle for the design of upper layer network
protocols.

This set of four chapters points to promising directions toward a scientific understand-
ing of core principles and fundamental properties of large complex sensor networks. Many
problems, however, remain. When is the separated design of source coding and channel
coding sufficient to achieve the best scaling behavior? How can delay and energy con-
straints be adequately modeled within the information theoretic framework? What are the
fundamental tradeoffs between communication and computation under energy and com-
plexity constraints? These are only a few of the many challenges we face in advancing the
basic science of large-scale wireless sensor networks.

Part II Signal Processing for Sensor Networks

Part II of this book focuses on signal processing problems in sensor networks. Fundamental
to sensor signal processing are distributed information processing at the individual sensor
nodes and the fusion of sensor measurements for global signal processing.

Distributed detection is a classical subject that attracted considerable interest in the late
1980s and early 1990s when the power of DSP and wired communications enabled the
networking of distributed radar systems for target detection and tracking. Radars generate
enormous amount of data, and transmitting all the measurements to a central processing
location is neither feasible nor necessary. The natural research focus then was how to
quantize measurements at the local sensor nodes and how to derive optimal inference
algorithm at the fusion center.

While many technical issues in classical distributed detection remain in modern wireless
sensor networks, several new challenges have arisen. The fading and broadcast aspects of
the wireless transmission medium, the presence of interference, and constraints on energy
and power demand a new design paradigm. Chapter 6 by Veeravalli and Chamberland is
an introduction to distributed detection for modern wireless sensor networks. This chapter
provides an informative survey of classical results and sheds new light on the interplay
among quantization, sensor fusion under resource constraints, and optimal detection perfor-
mance. The approach based on asymptotic statistical techniques is especially appropriate
for large sensor networks.



