Lecture Notes In

Computer Science

Edited by G. Goos and J. Hartmanis

141

UweKaiters
Brigitte Hutt .
Erich-Zimmer‘mann .

 GAG: A Practical .
- Compiler Generator

:

SpringerVerlag -
Berlin Heidelberg New York

Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

141

Uwe Kastens
Brigitte Hutt
Erich Zimmermann

GAG: A Practical
Compller Generator

Springer-Verlag
Berlin Heidelberg New York 1982

Editorial Board
D. Barstow W.Brauer P Brinch Hansen D. Gries D. Luckham
C.Moler A.Pnueli G. Seegmiiller J. Stoer N. Wirth

Authors

Uwe Kastens

Brigitte Hutt

Erich Zimmermann

Institut fiir Informatik Il der Universitit Karlsruhe
Postfach 6380, 7500 Karlsruhe 1

CR Subject Classifications (1981): D2.1,D3.1,D3.2,D3.4, F4.2

ISBN 3-540-11591-9 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-11591-9 Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort”, Munich.

© by Springer-Verlag Berlin Heidelberg 1982

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210

CONTENTS :
Chapter 1l: Introduction

Chapter 2: The Compiler Generator GAG

2.1 Introduction

Attributed Grammars
System Overview

The Generated Compiler
4.1 Parser Interface

4.2 The Structure Tree
4,3 Attribute Evaluation
4.4
4.5
e

2
2
2

NDNONAOAUTNNNNNNNBWN

Attribute Types
I/0 of the Generated Compiler

e« ° o o o

Dependency Analysis

Attribute Optimization

Compiler Generation

Experience

8.1 The Processing of Attributed Grammars
.8.2 Generated Compiler Front-ends

NN NN
o & o o

Chapter 3: ALADIN -

A Language for Attributed Definitions
Introduction
1 Notation
Basic Symbols
eneral Structure
onstant Definitions
ype Definitions
Enumeration Types
Subrange Types
Union Types
Structure Types
Set Types
List Types
mbol and Attribute Definitions
roductions
emantic Rules
1 Attribute Rules
2 Attribute Names
3 Attribute Transfer
4
e

3.

.
= =

e O Qe o

Koo wN -

[\S]

www
o o
o R

N WUe » o ¢ o

www
e e o

Context Conditions
mantic Expressions

w
.

1l Formulas

2 Type and Symbol Tests
3 Remote Attribute Access
4 Let Clauses

5 Operands
emantic Clauses

1 Type Conversion
2

3

4

5

F

w
.

Calls

Case Clauses

Conditional Clauses

Relational Clauses
unction Definitions
.10.1 Generic Functions
1 Standard Definitions

Qe o

w
.
HWHWOWWWWWOWWWWWOWWWWNOUWWWwwwwbdsWNWWH

w
.

\%

Chapter 4: Development of an Attributed Grammar
for a Pascal-Analyzer

Introduction

Development of the Attributed Grammar

.1 Types

.2 Scope Rules

Error Handling

Performance and Optimizations

Results of Attribute Evaluation

Chapter 5: Generating Efficient Compiler Front-ends
5.1 1Introduction
5.2 Basic Generation Concepts
.2.1 Types in the Generated Compiler
5.2.2 The Program Tree Structure
.2.3 Sequence Control of Attribute Evaluators
5. mprovement of the Tree Representation
1 Tree Compactification
2 Tree Partitioning
3 Attribute Evaluation Without Tree
ttribute Optimization
eneral Optimization Techniques
1 Common Subexpressions
2 Recursion Elimination
3 1Inline Code for Functions
G Transformations
pplication to Pascal

5
5
3
5
5
5
4
«5
5
5
5
6
7
8 esults

ol d

Appendix A: Attributed Grammar for Pascal
Appendix -B: Results of the Usage of GAG

References

37

37
38
39
43
46
48
50

53
53
54
55
55
56
58
59
60
60
61
64
64
65
65
65

71
73
137
155

Chapter 1:

Introduction

Modular decomposition of the compilation problem for programming
languages leads to the main compiler tasks scanning, parsing, semantic
analysis, optimization and code generation. Attributed grammars (AGs)
are a well suited method for definition of static context dependent
properties of programming languages, thus specifying the semantic
analysis phase. For usual high level lanquages this phase comprises
application of scope rules, type checking, overloading resolution,
etc. Implementation of semantic analysis can be systematically
derived from such a specification: A tree representing the abstract
program structure is augmented by attributes specified 1in the AG.
Hence AGs are a widely accepted base for systematic compiler construc-
tion. This book shall demonstrate that the AG method is a suitable
base for practical compiler generators.

The GAG-System 1is a compiler Generator based on AGs. Its development
was guided by three dominating aims: The system should be usable in
practical compiler projects; it should be able to process AGs which
are written as formal language definitions rather than as implementa-
tion oriented specifications; and the generated attribute evaluators
should be efficient.

The GAG-System uses an attribute evaluation technique (OAG technique,
see [Ka8@] and Sect. 2.2) which is more powerful than the multi-pass
techniques of comparable systems. In practice it turned out that this
technique releases the wuser of the system from consideration of
attribute evaluation order during AG development. The evaluation
order is computed automatically by the GAG-System - even for complex
languages like Ada or PEARL. We developed an input 1language for the
system which is suitable for writing AGs as self-contained definitions
of static language properties on a high level of abstraction (see
Chapter 3). AG development is supported by elaborated system facili-
ties (see Chapter 2 and Appendix B). The generated attribute evalua-
tors can easily be embedded in a complete compiler environment using
suitable interfaces and parameterized modules for compiler phases not
specified in the AG (e.g. scanner, protocol generator). Efficiency of
the generated attribute evaluator 1is achieved by many effective
optimizations of space and runtime which are automatically applied by
the GAG-System (see Chapter 5). Portability and maintainability of
both the system and its products are achieved by systematic implemen-
tation techniques using Standard Pascal.

Attributed grammars were introduced by Knuth [Kn68] as a method for
defining semantics of programming languages based upon the following
principles (see Sect. 2.2): v

The syntactic structure of sentences in the defined 1language is
described by a context-free grammar. The derivation of a sentence
can be represented by a structure tree in which every node stands
for a symbol of the context-free grammar's vocabulary.

The AG associates a set of attributes with each symbol in the
context-free grammar's vocabulary, and hence with each node in the
structure tree of a sentence. The value of an attribute describes a
context dependent property of the language element represented by
the symbol, e.g. the type of an expression or the set of definitions
valid in the particular context.

The AG associates attribute rules with each production of the
context-free grammar specifying the computation of attribute wvalues
in terms of attributes of surrounding nodes. Application of a
production to derive a symbol selects the attribute rules by which
the attributes of the corresponding nodes will be computed. The
correspondence between attributes and values is static. An attribute
of a node of the structure tree can only take on a single value.
The attribute rules are static definitions; they should not be
thought of as algorithms over variable attributes.

The AG describes a sublanguage of the 1language defined by the
context-free grammar through context <conditions that must be
satisfied by the attribute values: A syntactically correct sentence
belongs to the defined language if and only if the context condi-
tions are satisfied for all attributes of the structure tree.

There are formal conditions on completeness and consistency for
well-defined AGs which ensure that the value of each attribute is
uniquely determined and effectively computable in any context.

The input language of the GAG-System (ALADIN, see Chapter 3) is based
on these principles for AGs. As a consequence of the static <character
of AGs ALADIN is a strictly applicative language without any control
flow elements. Attribute evaluation order is computed automatically
by the GAG-System. A powerful type concept allows definition of the
attributes' meaning on a high level of abstraction. The strong typing
rules of ALADIN and the well-definedness of the AG - both checked by
the GAG-System - guarantee a high degree of consistency and complete-
ness of the specification. The input language encourages the writing
of comprehensible AGs by naming all defined entities and by powerful
abbreviations.

The development of an AG for a programming language can be compared
with software specification. Specification tools like AGs, GAG, and
ALADIN must be used reasonably by application of suitahle systematic
methods and standard techniques. In Chapter 4 general development
methods and standard description techniques are presented for common
properties of high 1level programming languages, using an AG for
Pascal as an example. The complete Pascal-AG is contained in Appendix
A. Furthermore, we show how error recovery and code generation (or
interfaces to it) can be specified.

In Chapter 5 it is shown that compilers automatically generated from
AGs need not be inefficient. Many effective improvements of storage
and runtime are applied automatically by the GAG-System. Measurements
on the compiler front-end generated from the Pascal-AG demonstrate
that space and runtime requirements necessary for practical usage can
be achieved.

In several projects we made very encouraging experience with the
GAG-System: In the PEARL project it helped to develop a consistent
and complete formal definition of the static properties of the large
and complex real-time language PEARL. The AG is part of the German
standard document [DIN8@]. In compiler projects for LIS and Ada the
AG served as a specification for the compiler front-end. The use of

the GAG-System enforced consideration of all consequences of the
described 1language properties before implementation. Open questions
could be answered and inconsistencies be removed before they caused
costly redesign of programs. Due to certain project requirements, the
implementation was produced by systematic manual translation. In
spite of that, the front-end generated by the GAG-System was used as
a valuable tool for testing the specification. In several smaller
scientific projects for application languages the GAG-System reduced
the costs for compiler development to the costs for the definition of
the 1language by an AG. Performance measurements on automatically
generated Pascal analyzers demonstrate that runtime and space require-
ments close to those of conventional compilers can be achieved. The
efficiency will be sufficient for many practical applications.

The subsequent chapters present different aspects of the GAG-System
and its wuse: Chapter 2 gives a system overview. It contains a short
introduction to AGs (Sect. 2.2) intended for readers who are not
familiar with this method. In Sect 2.8 our experience with practical
applications 1is summarized. Chapter 3 is the reference manual for the
input language ALADIN. The general concepts and the notation are
introduced in Sect. 3.1. The rest of that chapter can be skipped in
the first reading because most of the later examples are self-explana-
tory. In Chapter 4 we demonstrate how an AG for a programming language
(Pascal) is systematically developed. It contains important Kknow-how
for AG development, and it shows how the specification tools are used
adequately. AGs for similar languages may be directly derived from
the Pascal-AG in Appendix A. Chapter 5 describes performance improve-
ments and their results applied by the GAG-System to the generated
compilers. Aspects for comparison of the GAG-System with other
compiler generating systems are found most of all in Chapter 2 and 5.

Acknowledgements: We are indebted to Prof. G. Goos who initiated the
project, established a fruitful working environment within his group,
and who made valuable remarks on early drafts of this book. We thank
Dr. J. Schauer, Dr. J. R8hrich, and the Ada Implementation Group
Karlsruhe for many helpful discussions and for acting as pilot users.
We thank Prof. W. M. Waite for the translation of the ALADIN defini-
tion. A significant part of the development of the GAG-System was
supported by the Deutsche Forschungsgemeinschaft.

Chapter 2:

The Compiler Generator GAG

2.1 Introduction

The GAG-System (Generator based on Attributed Grammars) generates a
compiler for a 1language defined by an attributed grammar (AG). The
underlying concepts were first outlined in [Ka76]. The central part
of the system 1is the analysis of attribute dependencies and the
generation of the attribute evaluation phase. Interfaces are defined
for scanner and parser.

The system processes attributed grammars of type OAG which is a 1large
subclass of well-defined AGs containing all classes of pass-oriented
AGs. For each AG 1individual visit-sequences are computed which
control the attribute evaluation in the generated compiler. Thus the
structure tree 1is traversed 1in an efficient (non pass-oriented)
manner. This method was presented in [Ka84].

The input language ALADIN (cf. Chapter 3) defines a notation for AGs
suitable for complete descriptions of the static properties of
languages. It 1is based on typed attributes and includes a powerful
and flexible type concept. Expressions and recursive functions over
attribute types allow precise and complete definitions of attribute
values.

2.2 Attributed Grammars

AGs were introduced by Knuth [Kn68] as a method for defining semantics
of programming languages. This section gives a brief formal introduc-
tion to AGs.

An AG 1is a 5-tupel (G, A, Val, R, C) based on a reduced context-free
grammar G=(N, T, P, S) - the sets of nonterminals, terminals, produc-
tions, and the start symbol. The AG associates a set A(X) of attribu-
tes to each symbol X in the vocahulary V=N\/T of G. We write X.a to
indicate that attribute a is an element of A(X). The sets of attribu-
tes are disjoint for different symbols. An attribute a can take on
any value of a domain Val(a). It represents a specific (context-sensi-
tive) property of the symbol X.

Each node in the structure tree of a sentence in L(G) represents a
symbol X in the wvocabulary of G. For each attribute of A(X) an
attribute value 1is associated with such a node. These values are
defined by attribute rules R(p) associated with a production p in P:
X@::=Xl...Xn. Each attribute rule Xi.a:=f(Xj.b,...,Xk.c) defines an
attribute Xi.a in terms of attributes Xj.b,...,Xk.c of symbols in the
same production.

In addition to attribute rules the AG associates context conditions

C(p) to each production p. A context condition is a relation
g(Xi.a,...,Xj.b) over attributes of symbols occurring in p. A context
condition of C(p) is fulfilled for a tree node derived by the produc-
tion p 1if the relation holds for the corresponding attribute values.
A sentence of L(G) is a sentence of L(AG) if and only if no context
condition is violated. We subsume attribute rules and context condi-
tions under the general term semantic rules.

The following requirements ensure that each attribute wvalue of any
tree node is defined by exactly one attribute rule: An attribute X.a
is called synthesized 1if there 1is an attribute rule X.a:=f(...)
associated with a production of the form X::=w. If such an attribute
rule is associated to a production Y::=uXv the attribute is called
inherited. Let AS(X) and AI (X) be the sets of synthesized and inheri-
ted attributes of X. Then AS(X) and AI(X) must be disjoint and
AS (X)\/AI (X)=A(X). For a production p: X@::=Xl...Xn the set of
defining occurrences of attributes is

AS (X8)\/AI (X1)\/AI (X2)\/...\/AI (Xn).
The set of applied occurrences is

AT (X0)\/AS (X1)\/AS(X2)\/...\/AS (Xn) .
There 1is exactly one attribute rule for each defining occurrence in
the set R(p) associated with p. R(p) contains no attribute rule for
an applied occurrence.

An AG is well-defined if all attribute values of any structure tree
are effectively computable. As a consequence the dependencies between
attributes of a tree which are established by the attribute rules
must be acyclic for the structure tree of any sentence 1in L(G).
Unfortunately, exponential time 1is required to verify that an AG is
well-defined [Ja75], and attribute evaluators which are applicable
for any well-defined AG are rather inefficient. Hence subclasses of
the class of well-defined AGs are considered for compiler construc-
tion.

The partitionable AGs (in [Ka80]: "AGs which can be arranged orderly")
form a large subclass of well-defined AGs including all classes based
on pass-oriented attribute evaluation (e.g. n left-to-right depth-
first passes [Bo76], or n alternating passes [JaW75]). The definition
of partitionable AGs is based on a partition of disjoint subsets
Ak (X) of each A(X) such that the attribute dependencies allow to
evaluate an attribute X.a of a certain tree node before X.b of the
same node if X.a is in Ai(X), X.b is in Aj(X), and i<j. A partitionab-
le AG 1is <called ordered (OAG) if the partitions are canonical in a
certain sense. A complete formal definition and a decision algorithm
for OAGs which requires polynomial time is given in [Ka8@]. Such an
algorithm is implemented 1in the GAG-System. It analyses attribute
dependencies completely at compiler generation time and computes a
non pass-oriented attribute evaluation order 1if the input AG is
ordered. A set of "visit-sequences" controls the attribute evaluation
in the generated compiler for any structure tree of the defined
language:

The attribute evaluation phase in the generated compiler operates on
a structure tree built by parsing the input program. Each inner node
with its direct descendants represents an application of a production.
The associated semantic rules are evaluated during a visit of such a
node. A visit-sequence associated with a production defines the
execution order for semantic rules and visits of surrounding nodes.
Thus a visit-sequence consists of the following operations:

- evaluate an attribute rule

- check a context condition
- visit the i-th descendant
- leave to the ancestor node

Attribute evaluation at any node derived by a production p in any
structure tree is controlled by the visit-sequence associated with p.

The computation of the visit-sequences is based on the partitioned
attribute sets. The sets Ak (X) contain alternatingly inherited
(AIk (X)) or synthesized (ASk(X)) attributes only: AIl(X), AS1l(X),
AI2(X), AS2(X), «... The precondition for the n-th visit to any node
labelled X is the evaluation of all attributes in AIn(X). The postcon-
dition of the visit is the evaluation of all attributes in ASn(X). It
holds after the corresponding 1leave-operation. Thus the attribute
partitions are to be considered as context independent interfaces
between visit-sequences applied to adjacent tree nodes. The partitions
are computed such that no direct or indirect attribute dependency
violates that partial evaluation order.

2.3 System Overview

The requirements a compiler generator must meet are manifold: Of
course the main task of such system is the generation of an attribute
evaluator specified by an AG. As the system is intended for applica-
tion in realistic compiler projects, it must support AG development
by providing helpful information about the AG such as attributes
dependencies, errors and other characteristics. The generated attribu-
te evaluator must be embedded in a compiler environment: As the
structure tree 1is the central data structure for the attribute
evaluation the system generates of a module for program tree construc-
tion; it provides interfaces to compiler modules not generated by the
system (scanner, parser, and synthesis phase if not specified by the
AG); it offers facilities for testing and for measurements of space
and runtime to be integrated into the attribute evaluator. The user
can easily control these facilities by specifications added to the
AG. The interface to the parser generator used here [De77] can be
adapted to the requirements of comparable systems. Applications for
usual high 1level programming languages are supported by standard
solutions for scanner and protocol generator. An example for a
protocol of a generated compiler 1is included in Appendix B, Sect.
B.4. The error messages 1inserted 1in the source text are defined
within the underlying AG (as can be seen in Appendix A).

The functions of the GAG-System are shown in Fig. 2.1.

The first phase of the GAG-System 1is a usual compiler task : The
ALADIN-text is scanned and checked for syntactical correctness (by a
generated LALR(l)-parser). The output of the parser, a sequence of
symbols and reductions, is used to build up the structure tree. The
semantic analysis is done by using the same techniques as applied in
the generated compiler: the structure tree is traversed for attribute
evaluation controlled by visit-sequences (VS). Since the scope rules
of ALADIN are very simple the main task of semantic analysis is type
checking.

| Scanning

| Parsing |
| Analysis of Static |
| Semantics |

T +
|
\'
ALADIN Analysis to—m e +
=============== Dependency
Analysis

Computation

of VS
B T +
B V
e +
| Attribute |
| Optimization]
tm—————————— +
|
\Y
B +
Fom——————— Parser Interface

|
| VS transformation |
| PASCAL definitions |
| PASCAL code |

+-————————————————————— +
|
o ———— + |
| Parser | | +=================+
| Generator | | # Invariant parts #
s m e ¥ [t=================+
| | |
o + | o +
| | [
\Y4 \ \4
+====================+
#
Compiler $
Fm====================4

Fig. 2.1: Functions of the GAG-System

The 1last function of the analysis part has no direct correspondence
to general compiler tasks. First the shorthand notations of ALADIN
describing attribute transport are expanded. For each shorthand
notation a set of equivalent attribute rules 1is generated. New
attributes are introduced for "long range" attribute transport. This
expansion is a precondition for the following analysis of attribute
dependencies. The dependency analysis checks whether the AG is
ordered (or arranged orderly by additional dependencies) and computes
visit-sequences using the method described in [Ka8@]. These phases

are discussed in Sect. 2.5.

The attribute optimization pnase reduces the amount of storage needed
for attribute instances in the generated compiler. Lifetime analysis
based on the visit-sequences determines which attributes can be
implemented by variables or stacks instead of tree node components.
Optimization 1is performed completely at generation time. Its results
are reflected by the generation phase.

The main task of the generation phase is the generation of a Pascal
program : the compiler specified by the AG. On the one hand the types
and objects (attribute wvalues) of ALADIN are mapped to types and
declarations in Pascal, on the other hand the attribute computations,
conditions, and functions are translated into Pascal statements,
functions, and procedures. A further task of the generation phase is
the transformation of the visit-sequences 1into an optimized table
which controls the tree-traversal in the generated compiler. In order
to use an externally generated parser the generation phase extracts a
description of the syntax which serves as input to a parser generating
system.

As mentioned above the development of an AG is supported by different
available system output: A protocol 1is generated showing which
GAG-passes have been executed and merging the messages (informations,
warnings, errors) with the input-text. A cross-reference-listing and
a listing of the dependency paths between selected attributes are
available. An example of the detailed 1information produced by the
system 1is shown in Appendix B. Sect. B.l shows the header of the
protocol resulting from a complete execution of GAG.

The implementation of the GAG-System reflects the following program
qualities:

a) Modularity. The main phases of the GAG-System form separate
programs communicating by files. This principle yields programs of
manageable sizes for development and maintenance. Each phase is
decomposed into modules according to its logical structure.

b) Portability. The system is implemented in Pascal as described in
[BSI82]. Parts using implementation dependent constructs, e. g.
for time measurements, are enclosed within special commands and
may be omitted using the preprocessor PROPP [Jan82].

c) Fault tolerance. The system is implemented in a defensive program-
ming style. Assumptions for interfaces between modules and phases
are verified on both sides. Sophisticated error recovery is
implemented in all phases. Hence the system can handle numerous
input and system errors.

The decision for Pascal as implementation language was determined by
its high portability. Other languages which support the hierarchical
development of large systems better were dropped due to their lack of
portability.

2.4 The Generated Compiler

According to the task of a compiler the generated attribute evaluator
has the following structure:

Parser | Tree-Con-
| struction

Irn standard applications the structure tree is built up by scanning
and parsing an input stream representing a program of the defined
language.

Besides the messages arising from violation of context conditions the
result of the attribute evaluation is the attributed structure tree.
The tree or only some "final" attributes can be written onto a file.

2.4.1 Parser Interface

The attribute evaluation is performed on the structure tree which
must be built up according to the context-free syntax contained’ in
any AG. Thus a description of the syntax 1is produced augmented by
actions which control the construction of the abstract program tree.
With each rule a call of a tree construction procedure is associated.
Its parameters specify the type of the tree node to be generated and
the number of subtrees. Additionally a list of those terminal symbols
is produced for which a tree node has to be generated (the symbols
which are introduced by a terminal definition in the AG).

Any top-down or bottom-up parser performing the specified actions can

be integrated into the generated compiler. We use a parser generating
system based on the LALR(l)-method [De77].

2.4.2 The Structure Tree

The 1internal representation of a program is the structure tree. It
consists of nodes for nonterminals and terminals and of special nodes
for repetition and optional clauses. The attribute evaluation needs
certain fields in the node records for nonterminals:

- a pointer to the subtrees,

- an indicator for the applied context-free rule,

- an indicator for the symbol on the lefthand side,

- attribute values of that symbol,

- a position referring to the source text.

The nodes for terminals only contain the symbol indicator and fields
for attribute values.

The tree is built up by a set of predefined procedures for allocating

and 1linking the nodes. These procedures are called by the (generated)
parser.

2.4.3 Attribute Evaluation

Attribute evaluation is implemented by a stack automaton (as described
in Sect. 6.3 of [Ka80]). The transition table contains the encoded
visit-sequences. The state of the automaton is a pair made up of the
actually visited node in the structure tree and an element of the
transition table. A visit of a descendant node is executed by pushing
the actual state and computing the new state. For an ancestor visit
the new state is popped from the stack. Sequences of semantic rules
to be executed successively (not containing a visit) are considered
as a basic operation of the algorithm. By that means space for the
transition-table and runtime for control operations are reduced to a
negligible size.

Context conditions check attribute values. If a condition fails, an
error message is written and, in general, attribute evaluation
continues. In Chapter 4 we show how semantic error recovery can be
integrated in an AG. The violation of certain implicit conditions -
such as the call of "HEAD" with an empty list - may result in an
undefined value. Only in that case does attribute evaluation stop.

2.4.4 Attribute Types

At first glance, the type concepts of ALADIN and Pascal are rather
similar: basic types, subrange, set, and structured types. The main
differences are: Instead of the Pascal variant concept ALADIN has
UNION types (as in ALGOL68), which are better suited for an applicati-
ve language, and ALADIN contains a LIST concept for sequences of
equally typed values with powerful list operations. On the one hand
there are no pointer types in ALADIN; on the other hand (almost) any
recursively defined type is allowed in ALADIN.

The basis of the type mapping of ALADIN into Pascal is the fact that
attributes never change their wvalues. So a mapping is chosen which
avoids copies of 1large data structures. Simple types are mapped to
their corresponding Pascal type (scalars, subranges, etc.). All types
of complex data structures (STRUCT, UNION, LISTOF) are mapped to
Pascal types using pointers:

STRUCT, UNION : pointer to a record

LISTOF : the anchor of the list (a record of two pointers to first
and last element) and ‘
the elements (a record with the element wvalue and a
pointer to the next element).

Thus identical copies of complex objects are implemented by pointer
copies: the object itself is allocated only once. Several complex
objects which share some components 1logically, even share them
physically as well.

12

2.4.5 I1/0 of the Generated Compiler

In standard applications the input to the compiler is the textual
form of the program to be translated. The output of the generated
attribute evaluator may be the attributed structure tree or (only)
some final attributes. Thus the system provides types and procedures
for binary I/0 which can be used for several purposes:

- The AG specifies a translation 1into a target (or intermediate)
language and the interface is a binary coded file.

- The specification of a 1language consists of several AGs, each
defining a pass of the compilation: The ©partially attributed
program tree is written onto a file and read by the next pass to
continue attribute evaluation.

- The specified language comprises facilities for separate compila-
tion: The compiler needs a connection to a library file containing
information of units which have already been compiled in the form
of attribute values or program trees.

To fulfil all these requirements, the generated program is provided
with definitions of 1intermediate representation for all attribute
types and for the program tree, and with generated procedures to read
and write these data.

In addition procedures for textual output are generated which are

helpful to produce a readable form of attribute-values for testing
the AG i.e. for validation of the specification by appropriate input.

245 Dependency Analysis

The GAG-System analyses attribute dependencies completely at compiler
generation time. If the input AG 1is ordered "visit-sequences" are
constructed which control attribute evaluation in the generated
compiler (see Sect. 2.2).

The central data structure for the analysis of attribute dependencies
is a collection of dependency graphs: For each symbol a graph over
the associated attributes, and for each production a graph over the
attribute occurrences of the symbols in the rule. The graphs are
iteratively wupdated: The direct dependencies of the attribute rules
are entered in the rule graphs. Any path between two attributes of
one symbol occurrence is entered in the corresponding symbol graph
and induced to all occurrences of that symbol in the rule graphs.
Iteration terminates when all graphs remain invariant. The symbol
graphs represent a superset of direct and indirect dependencies
between two attributes of any symbol occurrence 1in any attributed
structure tree (cf. [Ka80]).

For each symbol graph the partitions (as described above) are computed
and represented by additional ordering dependencies. If an attribute
can be assigned to more than one partition, the later evaluated
partition 1is chosen. By that means lifetime of attribute values is
shortened ("lazy attribute evaluator" in [Po79], cf. Sect. 2.5).
Appendix B, Sect. B.2 contains examples for dependency graphs.

The partially ordered rule graphs augmented by the ordering dependen-

cies are linearized and converted to visit-sequences. Any freedom in
the partial order is used for optimizing strategies:

