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Preface

Few-body systems are both technically relatively simple and physically non-
trivial enough to test theories quantitatively. For instance the He-atom played
historically an important role in verifying predictions of QED. A similar role
is contributed nowadays to the three-nucleon system as a testing ground for
nuclear dynamics and maybe in the near future to few-quark systems. They .
are also often the basic building blocks for many-body systems like to some
extent nuclei, where the real many-body aspect is not the dominant feature.™ "

The presentation of the subject given here is based on lectures held at var-
ious places in the last ten years. The selection of the topics is certainly subjec-
tive and influenced by my own research interests. The content of the book is
simply organized according to the increasing number of particles treated. Be-
cause of its conceptual simplicity.single particle motion is very suitable for in-
troducing the basic elements of scattering theory. Using these elements the
two-body system is treated for the specific case of two nucleons, which is of
great importance in the study of the nuclear interaction. Great space is
devoted to the less trivial few-body system consisting of three particles. Again
physical examples are taken solely from nuclear physics. Finally the four-
particle system is discussed so as to familiarize the reader with the techniques
required for the formulations of n-bodies in general. One of the aims of the n-
body connected kernel formulations is to put conventional, intuitively
invented nuclear models and reaction theories on a firm basis. Though there
are already promising insights available, the break-through has apparently not
yet been found and the natural and desired extension of the matter developed
here is still on the “second sheet”. .

In order not to overload the content of these introductory notes and par-
tially because of existing presentations certain techniques and subjects are not
dealt with. These are variational methods, the use of hyperspherical har-
monics, the elaboration of finite rank approximations of z-operators and ker-
nels (which played and still play an important role), the very.interesting prob-
lem of formulating a relativistic theory for n particles, and the whole dynam-
ical problem of nuclear forces which includes the very successul recent solu-
tion of few-body Bethe-Salpeter equations.

In the techniques and subject treated there exists a large amount of pub-
lications. We would like to apologize to those authors whose work is not



VI Preface

directly or sufficiently well mentioned. There are several reviews and articles
related to our subject. Besides special monographs on few-body systems we
refer the reader also to some books which are closely related. An important
source of information are the proceedings of the international few-body con-
ferences held up to now. All these sources are cited at the end.

The book is written for students and does not require more than a basic
course in QM. It emphasizes also the practical points of view and will hopeful-
ly be profitable to some researchers working in that field as well.

This work would not have been undertaken without the continuous stimu-
lation by Professor Hélio T. Coelho. I am very thankful to him and for his
kind hospitality which he extended to me at his institute in Recife, where parts
of the notes have been written. Dr. R. Brandenburg eradicated my major
blunders in English and helped me i» some parts to clarify the presentation,
for which I thank him very much. Last but not least I want to thank Mrs.
Kéchele and Mrs. Walter, for their skill and patience in transcribing success-
fully my handwriting into a legible form.

Bochum, January 1983 W. Glockle
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1. Elements of Potential Scattering Theory

Scattering of a particle by a potential is a simple physical picture but rich
enough to introduce such basic concepts of scattering theory as Moéller wave
operators, in- and outgoing particle flux, unitarity, S-, 7- and K-matrices,
Lippmann-Schwinger equations, S-matrix pole trajectories, criteria for con-
vergence or divergence of Neumann series, etc. Therefore the first chapter is
basic and following ones use the language developed here, while enriching and
extending it according to the increase of possible physical processes for two
and more particles.

1.1 The Moller Wave -Operator

Let us regard the scattering of a particle by a potential. We assume that the
potential drops towards zero outside a certain bounded domain D in space.
Initially while approaching D, the particle moves freely with a certain momen-
tum. As it crosses D it will experience a force which classically would bend the
initial straight line trajectory. Having left D the particle again moves freely
but with a final momentum which can be different from the initial one. It will
be the task of Chap. 1 te develop techniques for answering the question of
how to find the probability for. the change .in momentum induced by the
potential. s

To describe the initial state of free-motion outside D we have to localize
the particle. Let us choose a wave packet y,(x, 1), which obeys the time dépen-
dent Schrédinger equation

 dwx, 1) -
Howolx, 1) = 1%’ .1

with the free Hamilton operator

Hy=haod g 1.2)

Zm_
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We put 4 =c=1. Then units for energy and length convenient for nuclear
physics result from Ac = 197.33 MeV fm.
Clearly wy(x, t) will be of the general form

Vo, 1) = —(Eﬂi)ﬁ f dg explilgx—E 01 fo@) | 1.3)

which is a superposition of momentum eigenstates

1 igx
Wak) = T (1.4)

with the energies E, = q*/2m.Ina scattering process the momenturh distribu-
tion fy(g) will be peaked at an initial momentum g;.
For example regard

3/4
fol@) = b—i,z-@) expl— (g —q)¥/b?] . (1.52)

The quantity b measures the momentum distribution in the beam. It is a
simple exercise to evaluate in that case the integral (1.3). The result is i

wolx, 1) = (27[‘)3,2 expli(gix — Eg )]

2
‘Ii)
X—1—
b? ( m

€X e
R 4 1+ith?2m

<1+ it b2>3/2
2m

Thus we find a plane wave with the central momentum ¢, in a region of space
of extension d ~ b ~'. The center of the wave packet travels along the classical
path. The spreading of the wave packet is controlled by the parameter

x (27)Y/4p3? (1.5b)

sl pre B (1.50)
2m 2q d q
Here we introduced a typical length L between source and detector and the
average momentum g of the particle. Under ordinary conditions & < 1 and the
spreading is negligible.
As the wave packet approaches D it will feel the potential V and its evolu-
tion in time will be governed by the time-dependent Schrédinger equation
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1.1 The Moller Wave Operator o

HYG, £) = i%)— (1.6)

with the full Hamilton operator
H=Hy+V. 1.7)

So we face the question, how is P(x, f) linked to yy(x, f) or in other words
how can we select out of the many solutions of (1.6) that specific one which
develops out: of the initial state wglx, £)? A first guess could be to fix ¥
through

Yx, t) > yolx, t) for t— —oo.

This requirement however is too weak, since both wave functions tend point-
wise towards zero in that limit, and one cannot distinguish between different
initial states y,. In the example (1.5b) y, tends towards zero pointwise like
|#]~32. This is true in general.

Exercise: Prove that
F() = [dq g% "f(q)
tends towards
const/[t|*? for |t|-e if f(0)%0.

Hint: use the method of 'st‘eepest descend [1.1].

Although the wave functions spread out with time, leading to smaller and
smaller amplitudes at each point x, their norms

12O =)/ Jdx|P@x, )| (1.8)

are time independent. Therefore, in order to enforce the equality of ¥ and y,
before the particle reaches D we might require

Jim (1) — yo(0)]-0. (1.9)

Then the question becomes, is (1.9) compatible with the time dependent
Schrédinger equations (1.1, 6)?
Equations (1.1, 6) tell us

lwo(2)) = exp[—iHy(t— ty)] | wo (%0))

. (1.10)
|P(1)) =exp[—iH(t—1))]|P(t))
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and we can write (1.9) as

9@ = wo(0) | = lexp [~ iH (£~ £6)] P(to) — exp[ — iHy(t — to)] wo(to) |
= | ¥(t0) — exp [iH (¢ to)] exp [ — iHo(t - 10)] wo(to) |- (1.9a)

The second equality follows from the unitarity of exp[—iH (t—1y)]. Thus the
requirement (1.9), together with the time evolution expressed through the
Schrodinger equation, will be :

|¥(t5)) = lim eHre~iHot|y 1)y 3 (1.11)

T— —

If that limit exists, then (1.11) is a link between | %) and | w,), compatible with
the Schrédinger equation. Moreover it gives us a prescription for constructing
a specific scattering state at the arbitrary time ¢ = ¢, which belongs to a certain
choice of initial conditions in the infinite past.

The limit in (1.11) defines the Méller wave operator [1.2]

2% = lim. (elfTes 1Moy . (1.12)

T — 00

and (1 .1\1) reads for an arbitrary time ¢
120> = 29 yo(t)y . (1.13)

This relation (1.13) is the formal solution of the scattering problem to a
specific choice of initial conditions. :

Let us now sketch a proof [1.3] for the existence of Q*), The ensemble of
wave packets y,(x, ¢) (¢ fixed) defines the space accessible to the particle. For
square integrable momentum distributions they span a Hilbert space. Thus we
have to show that Q*) exists on the whole Hilbert space. Define

W(t) = e'f*e ~1Hot : (1.14)
and regard

’ ‘ .
(W (t2) ~ W(t1)) wo(0) | = N Ifdt% W (1) o(0) , | (1.14a)
b

The limit (1.12) exists if (1.14a) can be shown to be arbitrarily small if
1 <1, <0 and |1, |is sufficiently large. Now together with the property of W,
namely Sl .~ .

% W(t) = ie™/(H — Hy) e~ iHo! = jiHit ikt (1.15)

we can estimate the rhs as
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T W) vo(0)
f uabadi
’ t§1 dar Vo

9]
<
f

d
=l 0
ot () wo( )”
t ) t
_ Tarie™ v o)1= §atVve®]. (1.16)
1 f

Then using the bound

lwo, )] < ;2-511713—,2- 1.17)
we end up with

I () - W(t)] wOm)usiVngdtﬁE«M (1.18)
Thus provided the potential has avfih.i.te norm

VP = fdx Vi(x) < oo (1.19)

the Moller wave operator Q) defined in (1.13) exists. In fact even weaker -
conditions on V guarantee [1.3] the existence of Q). The potential has only
to be locally square integrable and to decrease faster than the Coulomb poten-
tial at infinity.

The result achieved up to now is hardly surprising. We have only formulat-
ed and verified everyones expectation that the scattering solutions of the time
dependent Schrodinger equation can be specified by certain initial conditions
in the infinite past-provided the potential is not too long range [see (1.19)]. In
addition we have fou;nd a certain operator, Q) which maps the unperturbed
initial state | w,) intd the complete state | ¥).

The result (1.12)'and (1.13) is not yet a practical one. The standard meth-
od of proceeding [1:4] is to reformulate it by using the relation:

rlir_n f@)= lin(l)s ? dt e¥'f(¢). (1.20)

We then rewrite (1.13) together with (1.12) as
0 ; .
|P0)) = lin(1)e | dt et'elf'e 10| y0(0))
& —

0 . :
=lime | dt e®e'fdg e F' \yg> fo(@)
-0 —oo

@) (1.21)

=lim (d
c-»OS i E,+ie
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In this manner we are led to an operator central to scattering theory: the resol-
vent operator to the Hamiltonian A

1
G(z) = L 1.22
(z) g (1.22)

Here z should obviously not be in the spectrum of H. Indeed in (1.21)
z=E,+ie. We shall study properties of G in Sect. 1.3.

It is now tempting to apply G on a momentum eigenstate | y/g), which is of
course not in Hilbert space. We define

Pty = lim— 1€ |0 1.23
1w = tim e gy (1.23

and ver:fy easily that | (") is a solution of the stationary Schrédinger equa-
tion

(H-E,)|Py)y =0. (1.24)

Since these states are not in the Hilbert space special care is needed in their
use. Thus (1.23) is the operation by which stationary states to H,, the mo-
mentum eigenstates, are mapped into specific eigenstates of H. The way
| w,‘,*’) incorporates the features of the scattering process will be discussed in
Sect. 1.4.

For a specific initial momentum the state [#5) contains all the informa-
tion about the scattering process and we get the time dependent state for a
general initial momentum distribution by superposition:

19> = e~ ™| 9(©0)) = [dg | #{Pye~ Eatfy(q) . (1.25)

1.2 The Cross Section

The main result of the last section, (1.25) together with (1.23) allows us to cal-
culate the scattering state at all times. Specifically we can determine the transi-
tion amplitude at time 7 into a state

lwa(D)y = e~ Ho|,0 ()
of sharp momentum gs:
Ag(D) = g ()| (1)) = (Y 2,(0) [eiHo'e 181 | g0y (1.26)

Since the cross section is proportional to the transition rate, (d/dt) |A |, we
shall also need



1.2 The Cross Section 7
Ay () = =iy, 0) [P Ve~ H! | 9 (0)) . (1.27)

Using (1.25) we find

Ag(t) = [dq exp[i(Eg— E)t1 w5 f0(q) (1.28)
and
Ag (1) = —i[dq exp[i(Eg~E) 1<y V¥ folg) - (1.29)

What are the momentum components <W2f| *I’S,”) of the stationary scattering
state | ¥$*)y, which is defined in (1.23)? If we switch off the potential the re-
solvent operator G(z) turns into

Go(z) = (1.30)
R gl
and | P$*)) reduces to the momentum eigenstate |y g):
lim—& |y =|y0). (1.31
e+0 Eg+ie—H, et =hee )
Then clearly we get
(wolw =0°a—q), (1.32)

which inserted into (1.28) yields just the contribution to Ag4.(2) from the un-
perturbed initial wave packet. How can we explicitly show that part in| ¥{*))?
There is an obvious algebraic identity between the two resolvent operators
Go(z) and G(2):

G(z) = Gy(2) +Go(2) VG(2) . (1.33)

We use it in (1.23) to separate | ?’f,*’) into a free and scattered part:
b

|?’fl+))=[u/2)+lim 1

14E 250 % 1.34
e-+0 E +ie—H, ¥4 5

Therefore we can express the momentum components of | ¥4 as

4 0 (+)
X V¥
<y/2,l¥'§,+)>=53(qf—q)+hm———_<"""| e - (1.35)

e = L 7

Here we encounter a central matrix element of scattering theory
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e 0 (+)
Tgrq = wqVI¥5"™) (1.36)

in terms of which we get

: ( T,

Ag(0) = folgp) + lim §dg expli(E,—E,)t] E,ﬁ_ii'riE—qffO(q) (1.37)
and

Ag(t) = —i[dq exp[i(Eg—E) 1] T,y fol@) - (1.38)

Now we are prepared to calculate the transition rate at time #:
dit |A',,f(t) |>=2Re { —i{dgq expli(E, — oA e

X fo@)fE(gp)—i lgii% Jdq expli(E,—E,)1]

: ! Fond J
X Touafo@) [ dq' exp[—i(E,—E,)t] — 24 fi(q )} 4
E —ie—E,,

(1.39)

We have to expect that it vanishes for large times ¢. For large times | ¥(¢)) de-
scribes the state when the particle has left the domain D and propagates again
freely. Therefore the overlap Ay (t) = (w‘q’f(t) | ¥(¢)) has to be time in-
dependent, since the two states belong to the same (free) Schrodinger equa-
tion. Indeed using the relation

e—ixt
lim lim < - >= —27mid(x) (1.40)
oo -0 \ X+1¢ ‘

we get from (1.37)

’lirgAQf(t) =f0(qf) —2ni qu J(qu Y Eq) quqfO(q)
= [dq [6°(q—q1) - 2n1 8(Ey,— E,) Tyy01 fo(@)
=[dq S,.,/0(q) . (1.41)

Clearly the quantity Sg¢q 18 the probability amplitude for scattering from ¢ to
grand is called the S-matrix element. We shall say more about S in Sect. 1.5.

The probability |4,.(7) |* therefore approaches a time independent limit for
t-»oo and its time derivative has to vanish. Mathematically this can also be
seen directly from (1.39) using basic properties of Fourier transforms. Given
this fact, how does a nonzero cross section arise? The cross section is the ratio
* of the transition rate to the incoming flux and we will now show that this

-
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ratio, as we go towards a stationary limit, will be nonzero. How do we ap-
proach the stationary situation in the initial state? The initial wave packet is
given in (1.3). Normalized to 1 it describes the motion of one particle. This is
reflected in the momentum distribution which sums up to 1:

fdq|fo@=1. (1.42)

We introduced in (1.52) as an example a Gaussian momentum distribution. In
that example a decreasing value b will confine the momenta contained in the
wave packet more and more to the neighbourhood of ¢;. However because of
the normalization condition (1.42) f;(g) cannot tend towards a J-function.
The normalization condition for a sequence of functions defining the J-func-
tion is

§f5(q)da=1, ) (1.43)

which in the Gaussian form leads to

1 gt
S = b3 7" @-g0*/b% S (1.49)

Note the different powers in b occurring in (1.52) and (1.44). We can write

fol@) = b¥*Qn)" f5q) (1.45)
and the particle density in the Gaussian wave packet is expressed as
lwotx, 7= b>2n)*?|fdg wox) e Fo' f5(@) . (1.46)

In the limit b—0 the property f5(q) — 0%(g —q,) reduces the integral to the
plane wave state y/,,31 exp(—iEgt) which has the constant particle density
(27) 3. The factor b>(27)*? therefore tells us by how much the probability to
find the particle in a unit volume for a spreading wave packet is reduced in
comparison to the constant probability of a plane wave state. As a conse-
quence, the probability that the incoming particle hits the target of finite
dimension and scatters into a final momentum state, described by |4, KO |2,
has to be expected to be reduced by the same factor. Indeed this is the case be-
cause of (1.45) and the quadratic dependence of | 4 |2 on fy(q). The same is
then true for the transition rate.

Now this rate, which decreases like > for sharper and sharper energies,
has to be divided by the incoming flux. The flux however, being of the form
density x velocity, will also carry the factor b Yin comparlson to the constant
flux j, belonging to a plane wave state. Indeed (V V V)

.1 "
J——2im (v Vo) (1.47)
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and for b— 0 we get

li|-b%@nr)*%j, with (1.48)
codel a 49)‘
95 Gnr

Therefore in the ratio between (d/dr) | A,,(¢) |* and | j | the factor 532 7)*?
cancels and the stationary limit & — 0 can be carried through. Thus instead of
(d/dt) | A |* we regard b ~3(d/dt) | A |*. Using (1.45) we derive from (1.39)

’ 1 d 2
i (53 a4

: 2 1
=2Re _163 -q)T,.,.—ilim|T -2“—_—'
{ @60 Torqy = 11im | Tgrq | E,n—is—EqJ

=2Im{T};4,6° (e~ 4:) +270(Egy— Eg) | Tyrail3 - (1.50)

The first term results from the interference of the initial wave packet, the
beam, with the scattered part of the wave function and is present only in the
‘forward direction.

Let us now regard the scattering events which have a momentum different
from the initial one. This is described by the second part, which moreover ex-
hibits energy conservation, a property obviously expected in potential scatter-
ing. Now depending on the experimental set up we can calculate the number
of events occurring per unit time. In potential scattering the most detaifed ob-
servable is the number of particles scattered per unit time into a solid angle dg;
and into a small momentum interval 4g;. Assuming constancy of 1 oo 10
these intervals that number is [up to the factor 2n)*?b3, which will be
cancelled by | j []

N = |Topq ' dds | dqrqi 2n8(Ey—Eq) = 2nm|qil| Tygl?dds.  (1.51)
af

Then the differential cross section

_ dNQn)’?b® _ dN

do H ~ (1.52)
0
turns out to be
do
——=Qn)*m?|T,, . (1.53)

dg;



