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Preface

Algebraic geometry has found fascinating applications to coding theory
and cryptography in the last few decades. This book aims to provide the
necessary theoretical background for reading the contemporary literature on
these applications. An aspect that we emphasize, as it is very useful for
the applications, is the interplay between nonsingular projective curves over
finite fields and global function fields. This correspondence is well known
and frequently employed by researchers, but nevertheless it is difficult to find
detailed proofs of the basic facts about this correspondence in the expository
literature. One contribution of our book is to fill this gap by giving complete
proofs of these results.

We also want to offer the reader a taste of the applications of algebraic
geometry, and in particular of algebraic curves over finite fields, to coding
theory and cryptography. Several books, among them our earlier book
Rational Points on Curves over Finite Fields: Theory and Applications, have
already treated such applications. Accordingly, besides presenting standard
topics such as classical algebraic-geometry codes, we have also selected
material that cannot be found in other books, partly because it is of recent
origin.

As a reflection of the above aims, the book splits into two parts. The first
part, consisting of Chapters 1 to 4, develops the theory of algebraic varieties,
of algebraic curves, and of their function fields, with the emphasis gradually
shifting to global function fields. The second part consists of Chapters 5 and
6 and describes applications to coding theory and cryptography, respectively.
The book is written at the level of advanced undergraduates and first-year
graduate students with a good background in algebra.

We are grateful to our former Ph.D. students David Mayor and Ayineedi
Venkateswarlu for their help with typesetting and proofreading. We also thank
Princeton University Press for the invitation to write this book.

Singapore, November 2007 HARALD NIEDERREITER
CHAOPING XING
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1 Finite Fields and Function Fields

In the first part of this chapter, we describe the basic results on finite fields,
which are our ground fields in the later chapters on applications. The second
part is devoted to the study of function fields.

Section 1.1 presents some fundamental results on finite fields, such as the
existence and uniqueness of finite fields and the fact that the multiplicative
group of a finite field is cyclic. The algebraic closure of a finite field and
its Galois group are discussed in Section 1.2. In Section 1.3, we study
conjugates of an element and roots of irreducible polynomials and determine
the number of monic irreducible polynomials of given degree over a finite
field. In Section 1.4, we consider traces and norms relative to finite extensions
of finite fields.

A function field governs the abstract algebraic aspects of an algebraic
curve. Before proceeding to the geometric aspects of algebraic curves in
the next chapters, we present the basic facts on function fields. In partic-
ular, we concentrate on algebraic function fields of one variable and their
extensions including constant field extensions. This material is covered in
Sections 1.5, 1.6, and 1.7.

One of the features in this chapter is that we treat finite fields using the
Galois action. This is essential because the Galois action plays a key role in
the study of algebraic curves over finite fields. For comprehensive treatments
of finite fields, we refer to the books by Lidl and Niederreiter [71, 72].

1.1 Structure of Finite Fields

For a prime number p, the residue class ring Z/ pZ of the ring Z of integers
forms a field. We also denote Z/pZ by F . It is a prime field in the sense
that there are no proper subfields of I¥,. There are exactly p elements in I,
In general, a field is called a finite field if it contains only a finite number of
elements.

Proposition 1.1.1. Let & be a finite field with g elements. Then:

(i) there exists a prime p such that ¥, € &;
(ii)) ¢ = p" for some integer n > 1;
(i) o = o forall @ € k.
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Proof.

(i) Since k has only g< oo elements, the characteristic of & must
be a prime p. Thus, IF, is the prime subfield of 4.

(ii)) We consider k as a vector space over F,. Since & is finite, the
dimension n := dimlpp(k) is also finite. Let {«y, ..., @,} be a basis
of k over IF,,. Then each element of & can be uniquely represented
in the form a,oy + - - - +a,a, withay, ..., a, € F,. Thus, g = p".

(iii) It is trivial that ? = «a if « = 0. Assume that « is a nonzero
element of . Since all nonzero elements of k£ form a multiplicative
group k* of order g — 1, we have /™' = 1, and so o = a. O

Using the above proposition, we can show the most fundamental result
concerning the existence and uniqueness of finite fields.

Theorem 1.1.2. For every prime p and every integer n > 1, there
exists a finite field with p" elements. Any finite field with g = p”
elements is isomorphic to the splitting field of the polynomial x7 — x
over IF .

Proof. (Existence) Let ]F_p be an algebraic closure of IF, and let £ C lF_,,
be the splitting field of the polynomial x?* — x over FF,,. Let R be the
set of all roots of x”" — x in k. Then R has exactly p”" elements since
the derivative of the polynomial x?" — x is p"x?”' ™! — 1 = —1. It is
easy to verify that R contains IF, and R forms a subfield of E (note that
(@ + B)"" = a?" + B¥" for any «, B € F, and any integer m > 1).
Thus, R is exactly the splitting field %, that is, £ is a finite field with
p" elements.

(Uniqueness) Let k£ C IF_,, be a finite field with ¢ elements. By Propo-
sition 1.1.1(iii), all elements of k£ are roots of the polynomial x9 — x.
Thus, £ is the splitting field of the polynomial of x4 — x over IF,,. This
proves the uniqueness. |

The above theorem shows that for given ¢ = p”, the finite field with ¢
elements is unique in a fixed algebraic closure ]F_p We denote this finite field
by IF, and call it the finite field of order ¢ (or with ¢ elements). It follows from
the proof of the above theorem that IF, is the splitting field of the polynomial
x%—x over I, and so F, /I, is a Galois extension of degree n. The following
result yields the structure of the Galois group Gal(F, /FF ).
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Lemma 1.1.3. The Galois group Gal(F, /F,) with ¢ = p" is a cyclic
group of order n with generator o : o > «a”.

Proof. It is clear that o is an automorphism in Gal(FF,/IF,). Suppose
that ™ is the identity for some m > 1. Then 6" (@) = «, that is,
a” —a = 0, forall a € F,. Thus, x?" — x has at least ¢ = p"
roots. Therefore, p™ > p”, that is, m > n. Hence, the order of o is
equal to n since |Gal(IF, /F,)| = n. O

Lemma 1.1.4. The field F,» is a subfield of F, if and only if
m divides n.

Proof. If m divides n, then there exists a subgroup H of Gal(F . /FF,)
with |H| = n/m since Gal(F, /IF,) is a cyclic group of order n
by Lemma 1.1.3. Let k be the subfield of IF,./F, fixed by H. Then
[k : F,] = m. Thus, k = [F,» by the uniqueness of finite fields.
Conversely, let F,» be a subfield of .. Then the degree m =
[F,n : F,]divides the degree n = [IF ) : IF,]. O

Theorem 1.1.5. Let g be a prime power. Then:

(i) [, is a subfield of F,~ for every integern > 1.
(ii) Gal(IF,./F,) is a cyclic group of order n with generator
oo al.
(iii) Fyn is a subfield of IF, if and only if m divides n.

Proof.

(i) Let ¢ = p* for some prime p and integer s > 1. Then by
Lemma 1.1.4,F, =F, CF,u =F,.
(ii) Using exactly the same arguments as in the proof of Lemma 1.1.3
but replacing p by g, we obtain the proof of (ii).
(iii) By Lemma 1.1.4, Fyn = F s is a subfield of Fy» = s if and
only if ms divides ns. This is equivalent to m dividing ». O

We end this section by determining the structure of the multiplicative group
[F; of nonzero elements of a finite field F,.
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Proposition 1.1.6. The multiplicative group I is cyclic.

Proof. Let t < g — 1 be the largest order of an element of the group
[;- By the structure theorem for finite abelian groups, the order of any
element of F; divides 7. It follows that every element of [ is a root of
the polynomial x’ — I, hence,t > g — l,andsot =q — 1. O

Definition 1.1.7. A generator of the cyclic group Iy is called a primitive
element of IF,.

Let y be a generator of [Fy. Then y" is also a generator of IF; if and only if
gcd(n, g — 1) = 1. Thus, we have the following result.

Corollary 1.1.8. There are exactly ¢(¢ — 1) primitive elements of I,
where ¢ is the Euler totient function.

1.2 Algebraic Closure of Finite Fields

Let p be the characteristic of F,. It is clear that the algebraic closure E
of IF, is the same as [F,.

Theorem 1.2.1. The algebraic closure of I, is the union U2 .

Proof. Put U := U ... It is clear that U is a subset of lF_q since
F,n is a subset of IF_p It is also easy to verify that U forms a field.

Let f(x) = Y. _oAx' be a nonconstant polynomial over U.
Then for 0 < i < s we have A, € F,» for some m; > 1.
Hence, by Theorem 1.1.5(iii), f(x) is a polynomial over F,», where
m = []'_,m;. Let a be a root of f(x). Then Fyn(c) is an algebraic
extension of F,» and Fy»(c) is a finite-dimensional vector space over
F,n. Hence, Fyn () is also a finite field containing I,. Let r be the
degree of Fyn(a) over IF,n. Then Fn (o) contains exactly g elements,
that is, Fyn(a) = F;m. So a is an element of U. This shows that U is
the algebraic closure F,. O

We are going to devote the rest of this section to the study of the Galois
group Gal(E/]Fq). We start from the definition of the inverse limit for finite
groups. For a detailed discussion of inverse limits of groups, we refer to the
book by Wilson [130].
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A directed set is a nonempty partially ordered set / such that for all
i1, 1> € I, there is an element j € [ for whichi; < jandi, < j.

Definition 1.2.2. An inverse system {G;, ¢;;} of finite groups indexed
by a directed set / consists of a family {G; : i € [} of finite groups and
a family {¢;; € Hom(G ;, G;) : i, j € I, i < j} of maps such that g;; is
the identity on G; for each i and ¢;; o ¢ % = ¢ wheneveri < j < k.
Here, Hom(G ;, G;) denotes the set of group homomorphisms from
Gj to G,‘.

For an inverse system {G;, ¢;;} of finite groups indexed by a directed set
I, we form the Cartesian product [],_, G;, viewed as a product group. We
consider the subset of []._; G; given by

iel

D= (X,‘) € l_[G, : (p,,(x,) = X; for all i, j el withi < j s

el

It is easy to check that D forms a subgroup of [[,_, G;. We call D the inverse

limit of {G, ¢;;}, denoted by lim_ G;.

iel

Example 1.2.3. Define a partial order in the set N of positive integers
as follows: for m,n € N, let m < n if and only if m divides n. For
each positive integer 7, let G; be the cyclic group Z/iZ, and for each
pair (i, j) € N? with i|/, define ¢;; : 7 € G; > 7 € G;, with the bar
indicating the formation of a residue class. Then it is easy to verify that
the family {Z/iZ, ¢;;} forms an inverse system of finite groups indexed
by N. The inverse limit lim._ Z/iZ is denoted by Z.

Example 1.2.4. Now let F, be the finite field with g elements. We
consider the family of Galois groups G; := Gal(FF,: /F,) of F,i over [F,
for each i € N. We define a partial order in N as in Example 1.2.3. For
each pair (i, j) € N? with i|j, define the homomorphism g¢;;: 0, €
Gal(F,, /F,) + U_I‘I]Fq, € Gal(F, /F,), where Ujl]Fq‘ stands for the
restriction of o to Fy:. Then {Gal(F,: /F,), ¢;;} forms an inverse system
of finite groups indexed by N.

Theorem 1.2.5. We have

Gal(F,/F,) ~ lim Gal(F, /F,).
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Proof. For each i € N, we have a homomorphism Gal(E/Fq) -
Gal(IF, /IF,) obtained by restriction. These together yield a homomor-
phism

0 : Gal(F,/F,) > [ | Gal(F, /F,).
ieN

It is clear that the image of 6 is contained in lim _ Gal(F,. /FF;). We show
in the following that 6 is an isomorphism onto lim _ Gal([F,,: /I, ).

If o # 1 is in Gal(F, /F,), then there exists an element x € F, such
that o(x) # x. By Theorem 1.2.1, x belongs to F,» for some n € N.
Now the image of o in Gal(IF,. /IF,) maps x to o(x), and thus (o) is
not the identity. Hence, 6 is injective.

Take (o;) in lim. Gal(F,: /F,). If x € ]F_q and we set o(x) = o;(x),
where x € [, then this is an unambiguous definition of a map
o : F, — [F,. Itis easy to check that o is an element of Gal(F,/IF,).
Since A(c) = (o), lim _ Gal(IFqi/[Fq) is the image of 6. O

Corollary 1.2.6. We have
Gal(F, /F,) =~ Z.

Proof. For each i € N, we can identify the group Gal(FF, /F,)
with Z/iZ by Theorem 1.1.5(ii). Under this identification, the family of
homomorphisms in Example 1.2.4 coincides with that in Example 1.2.3.
Thus, the desired result follows from Theorem 1.2.5. a

It is another direct consequence of Theorem 1.2.5 that the restrictions of all
automorphisms in Gal(F, /FF,) to IF,» give all automorphisms in Gal(F,» /IF,),
that is, we obtain the following result.

Corollary 1.2.7. For every integer m > 1, we have
Gal(Fn /Fy) = {o|5,n : 0 € Gal(F,/F,)}.

Foreachi € N, let w; € Gal(F, /FF,) be the automorphism 7; : x > x9.
Then the element (7;) is in lim_ Gal(F,: /F,). This yields an automorphism
in Ga](F_q/IFq). We call it the Frobenius (automorphism) of IP‘_q/IFq, denoted
by . It is clear that w(x) = x? for all x € E and that the restriction of 7 to
i is 7;, the Frobenius (automorphism) of F i /IF,.
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1.3 Irreducible Polynomials

Leta € IF‘_q and o € Gal(]F—q/IFq). The element o () is called a conjugate of
a with respect to .

Lemma 1.3.1. The set of conjugates of an element o € IF_q , With respect
to IF, is equal to {(mi(@):i=0,1,2,...}, where 7 € Gal(F, /F,) is the
Frobenius automorphism.

Proof. Leto € Gal(F—q/Fq). There exists an integer m > 1 such that o
is an element of F». Then the restrictions o |, and 7|, are both ele-
ments of Gal(IF,» /IF,). Moreover, 7 |f,, is a generator of Gal(Fy» /FF,).
Thus, O'I)Fq,,, = (7T|]Fq,,, )" for some i > 0. Hence, o(x) = orlu.-q,, () =
(g ) (@) = 7' (). O

Proposition 1.3.2. All distinct conjugates of an element @ € IF_q with
respect to ]Fq are o, (), ..., 7" Y(«), where m is the least positive
integer such that IF;» contains «, that is, m is such that F,» = F ().

Proof. The restriction 7|, of m to F,» has order m since it is a
generator of Gal(F,~»/F,). Hence, 7" (a) = (7|p,n)" () = «. This
implies that o, (), ..., 7™ () yield all conjugates of «. It remains
to show that they are pairwise distinct. Suppose that 7"(«¢) = « for
some n > 1. Then it is clear that 7"(8) = B for all B € F, (), that is,
B?" — B = 0 for all elements B € Fyn. Thus, the polynomial x9" — x has
at least ¢" roots. Hence, n > m. This implies that o, 7 (), ..., 7" ' (a)
are pairwise distinct. |

Corollary 1.3.3. All distinct conjugates of an element a € IF—q with
respect to I, are o, a%,a%,...,a""', where m is the least positive
integer such that F,» contains «, that is, m is such that Fy» = F ().

Proof. This follows from Proposition 1.3.2 and the fact that 7 (o) = 9.
O

By field theory, all conjugates of « with respect to F, form the set of all
roots of the minimal polynomial of « over [F,. Hence, we get the following
result.
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Corollary 1.3.4. Let f be an irreducible polynomial over I, of degree
m—1

m and let @ € ]I‘T, be a root of f. Then a,af, a?, ..., af"" are all
distinct roots of f, and moreover F,» = IF,(a).

From the above result we obtain that all roots of an irreducible polynomial
Jf over I, are simple and that IF,~ is the splitting field of f over IF,, where

m = deg( /).

Lemma 1.3.5. A monic irreducible polynomial f(x) of degree m over
F, divides x4 — x if and only if m divides n.

Proof. Let @ € ]F_q be a root of f(x). Then we have Fy» = F, (o)
by Corollary 1.3.4. If m divides n, then Fy» is a subfield of F,» by
Theorem 1.1.5(iii). From Proposition 1.1.1(iii) we get 4" — B = 0 for
all B € F,u. In particular, &¢" — a = 0. Hence, the minimal polynomial
f(x) of a over F, divides x¥" — x.

If f(x) divides x" — x, then a?" — @ = 0. Hence, @ € F,» by the
existence part of the proof of Theorem 1.1.2. Now Fyn = F, () C Fy»
and our desired result follows from Theorem 1.1.5(iii). O

Since x¢" — x has no multiple roots, we know from Lemma 1.3.5 that the
product of all monic irreducible polynomials over F, whose degrees divide
n is equal to x9" — x. From this we obtain the number of monic irreducible
polynomials over I, of given degree, as stated in the following theorem.

Theorem 1.3.6. Let /,(n) be the number of monic irreducible polyno-
mials over F, of fixed degree n > 1. Then

1
o) = =3 u(d)g"",

d\n

where the sum is over all positive integers d dividing » and p is the
Mobius function on N defined by
1 ifd =1,
u(d) = { (=1)" if d is the product of r distinct primes,

0 otherwise.
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Proof. Since the product of all monic irreducible polynomials over
[F, whose degrees divide # is equal to x4" — x, we obtain the identity

q" =) dl(d

d|n

by comparing degrees. Applying the Mobius inversion formula
(e.g., see [72, p. 92]), we get the desired result. O

1.4 Trace and Norm

In this section, we discuss two maps from the field F» to the field F,: trace
and norm.

Definition 1.4.1. The trace map Trg,, /¢, from Fy» to F, is defined
to be

Yo,

oeG

where G := Gal(F » /), that is, for any a € ]qu, we put

Trg, /5, (@) = ) 0(@).

oeG

If there is no confusion, we simply denote the map by Tr.

For any t € Gal(F;» /F,) and o € F,», we have

(Tr(@)) = © (Zo(a)) =Y (zo)a) = > ol@) = Tr(a).

oeG oeCG oeG

Thus indeed, Tr is a map from [~ to F,. Furthermore, the trace map has the
following properties.

Proposition 1.4.2.

(i) Tr(e + B) = Tr(a) 4+ Tr(B) forall o, B € Fgm.
(i) Tr(acr) = aTr(a) forall @ € Fy» and a € Fy.



