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Preface

The last decade has been marked by a rapid growth in statistical mechanics,
especially in connection with the physics and chemistry of the fluid state. Our
understanding in these areas has been considerably advanced and enriched by
the discovery of new techniques and the sharpening of old techniques, ranging
all the way from computer simulation to mode-mode coupling theories.

Statistical mechanics brings together under one roof a broad spectrum of
mathematical techniques. The aim of these volumes is to provide a didactic
treatment of those techniques that are most useful for the study of problems of
~current interest to theoretical chemists. The emphasis throughout is on the
techniques themselves and not on reviewing the enormous literature in
statistical mechanics. Each author was charged with the following task. Given
N pages, (a) pose the problem, (b) present those aspects of the particular
technique that clearly illustrate its internal workings, (c) apply the technique to
the solution of several illustrative examples, and (d) write the chapter so that it
will enable the reader to approach key citations to the literature intelligently.

These volumes are designed for graduate students and research workers in
statistical mechanics. Nevertheless, because of the range of techniques and
their general utility, they should be useful in other areas as well.

The choice of topics was dictated not only by the taste and interests of the
editor, but also by the proviso that there did not already exist a didactic
treatment in the literature. The topics fall rather neatly into two categories:
equilibrium and nonequilibrium properties of fluids. Thus, this volume is
devoted to equilibrium techniques and the companion volume to the non-
equilibrium techniques.

This volume begins with a chapter on modern cluster methods in equilib-
rium statistical mechanics and shows how topological reduction can be used to
renormalize bonds. A general discussion of renormalization methods is given
- and the formalism is applied to the study of polar gases, ionic solutions,
perturbation theory of fluids, hydrogen-bonded fluids, and integral equations.

This chapter is followed by two chapters on the treatment of fluids with
i long-range forces. In particular, special techniques are presented for treating
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Coulomb forces and permanent multipolar forces. These chapters draw on
some of the concepts developed in the first chapter.

Much of what is known about the fluid state springs from Monte Carlo
studies of model fluids. Chapter 4 is concerned with the application of Monte
Carlo techniques to the study of fluids with short-range forces. Chapter 5
extends this method to the study of fluids with long-range forces and introduces
some innovative techniques. The volume closes with a chapter on nucleation
theory. ;

Bruce J. Berne
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Cluster Methods in
‘Equilibrium Stattsttcal
_Mechamcs of Flu;ds

Hans 84 Andersen

1. Introduction

Cluster expansion methods have proven to be exceedingly useful and general
for discussing the equilibrium structure and thermodynamic properties of
fluids. They have been used to rederive older results, such as the virial
expansions for gases'" and the Debye-Hiickel theory for ionic solutions,” and
then extend them in a systematic way. They have been used to derive
approximate results that had not been obtained in other ways, such as the I and
vy expansions™ and the EXP approximation® for classical fluids. Moreover,
they provide a unifying language for discussing and comparing the variety of
theories of liquids that have been proposed; for example, many integral
equations such as the Percus—Yevick equation" and the mean spherical model
equation®® for the pair correlation function of a fluid can be regarded as
~ devices for summing certain diagrams in a cluster series.

‘ In the early work of Mayer," ? the theoretical manipulation of cluster
expansions involved solving a number of rather complex combinatorial prob-
lems and was formidable enough to deter all but the most stalwart of theoreti-
cians. A curious aspect of this work is that the route from a rather simple
starting point (the formal definition of a canonical ensemble partition function)
to an elegant and simpie result (an expression for the free energy or pressure in
terms of irreducible cluster, integrals) required such a complicated path.. It was
asiif all the complications introduced in the combinatorial analysis magically

Hans C. Andersen o Department of Chemistry, Stanford University, Stanford, California ~
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2 Hans C. Andersen

disappeared at the end to give a simple answer. The work of Morita and
Hiroike® (see also Stell'®) cleared up many of the difficulties by pointing out
some of the formal properties of cluster series that are responsible for obtaining
simple results. In the more recent work on cluster expansions, combinatorial
problems play a very minor role; they are needed for deﬁning cluster series and
for evaluating cluster integrals but not for the formal manipulation of cluster
series.

In this article we will deal with graphical methods for calculating the free
energy and pair correlation function for homogeneous classical fluids consist-
ing of atoms and rigid molecules away from the critical point. The formalism for
fluids of molecules with orientation-dependent forces and for mixtures of
molecules is no more complicated than for atomic liquids, and so we will
include these features in the discussion. We will discuss some general proper-
ties of cluster expansions and then discuss techniques for reexpressing cluster
series in forms that lead to computationally tractable and accurate approxima-
tions for fluids of various types.

Section 2 defines the graph-theoretic terms we will use. In Section 3, the
statistical-mechanical quantities related to fluid structure and thermodynamics
are defined and are expressed in terms of cluster expansions. Section 4 contains
a discussion of “topological reduction,” which is the basic theoretic tool for
manipulating cluster expansions. Section 5 discusses the various strategies used
in applying cluster theory to particular problems. In Section 6, some examples
are discussed to illustrate the various strategies.-Section 7 contains some
suggestions for further reading. ‘

Two other chapters in this volume, namely, Chapter 2 by Stell and Chapter
3 by Friedman and Dale also contain discussions of particular applications of
cluster expansion theory. :

2. Graph-Theoretic Definitions .

In this section we will define some of the important terms associated with
the graphs in cluster expansnon theory :

2.1. Definition of 2 Graph and the Ideas of Topological Equivalence and
Connectivity '

A graph is a collection of points and bonds that connect these points. Ina .
pictorial representation of a graph, a point is drawn as a small circle and a bond
as a line from one circle to another. (In some applications, it is convenient to
define bonds that connect three or more points but we will not discuss this
possibility here.) There are two different kinds of points, namely, root points
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and field points. Root points are represented as open circles and field points as
filled circles. (In some applications there is more than one type of root and field
point, but we will not consider this here.) In some applications, there is only one
type of bond, which is usually represented as a solid line. In other applications,
there is more than one type of bond, and so we might use a solid line to denote
one type of bond, a dashed line to represent the second type, etc. (For present

_ apphcatlons, bonds have no intrinsic direction.) For theoretical mampulatlons
in cluster theory, it is usually most convenient to deal with graphs in which the
root points are labeled but the field points are unlabeled. That is, each root
point is given a label, usually a number, and no two roots have the same label.
Unless otherwise specified, all graphs discussed in this article are of this type.
Some examples of graphs are given in the various figures.

We now wish to consider the idea of whether two graphs are topologzcaIIy
dzﬂ'erent or topologically equivalent. We will first discuss this idea informally
and then give a more precise definition.

First of all, the question of whether two graphs are topologically equiva--
lent or different arises only when they have the same number of root points and
those roots have the same set of labels. Roughly speaking, two graphs are
topologically equivalent if one can be “distorted” in such a way that it is
superimposable on the other. To envisage the types of “distortions” that are
allowed, imagine the points as buttons and the bonds as flexible rubber bands
that connect thé buttons. The buttons may be freely moved around on the
graph, and when they move they drag along the ends of any rubber bands that
are attached to them. The rubber bands can freely pass through each other,
however. Some examples of topologically equivalent graphs are given in Fig. 1.

To define this concept more precisely, we need to define a labeled graph. A
labeled graph has exactly the same definition as that given above for a graph,
except that the field pomts (if any) as well as the root points have labels, usually
numbers, and no two points have the same label: It is easy to define topological
equivalence for labeled graphs. Two labeled graphs which have the same

. number of root points, the same set of labels on the root pomts the same

e ot N g
G 2 2 | | 2 | 2
a b C d

" = f g h i

Fig.1. Examples of topologxmlly equivalent graphs. Graphs a and b are equivalent; as are cand d;
_ ‘t,f and g; hand i. (The symmetry numbers of graphsa-iare 1, 1, 1, 1, 8, 8, 8, 2, and 2, respectively. )




