MANAGEMENT METHODOLOC
FOR SOFTWARE
PRODUCT ENGINEERING

RICHARD C. GUNTHER

MANAGEMENT
METHODOLOGY
FOR
SOFTWARE
PRODUCT
ENGINEERING

RRRRRRRRRRRRRRRR

Copyright © 1978 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Sections 107 and 108 of the
1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:

Gunther, Richard C., 1937-
Management methodology for software product
engineering.

““A Wiley-Interscience publication.”

Bibliography: p.

Includes index.

1. Computer programming management. . Title.

QA76.6.G85 6587.05 78-711
ISBN 0-471-33600-9

Printed in the United States of America

10987654321

PREFACE

Back in 1620 Francis Bacon challenged the Aristotelian view of the
sciences as unrelated collections of aphorisms. In his New
Organon he introduced a method of induction whereby he iterated
from observed facts to derived axioms to further experiments and
then to new axioms. Through this method he discovered underlying
principles common to many sciences. Simultaneously, René Descartes
codified the procedures of science into self-consistent systems of
theory.

We who call ourselves software engineers have taken a similar
approach. We challenge the view that the production of software is
fundamentally different from the production of anything else. We
observe the facts accumulated over several years of software produc-
tion, compare them with other facts from our environment, and
exploit similarities to determine underlying principles. While we still
share Bacon’s uncertainty about the exact character of abstractions,
our experience shows us that there do exist general principles, and
that adherence to them improves our ability to produce software on
time, within budget, and according to specification.

In this book you will find a methodology for managing the plan-
ning, design, construction, evaluation, documentation, distribution,
and maintenance of software. This methodology exploits the high cor-
relation between phases in the life cycle of a software system and the
functions that must be performed throughout the cycle. You will see
how top-down design, management by objectives, configuration
management, and other principles can be integrated through a self-
consistent set of documents and procedures that continually reinforce
one another.

This book emphasizes the product concept; the concept of heavy-
duty software—software to be used by a vast, perhaps little known
body of users and to be promoted, maintained, and enhanced over a
long period of time. It presents techniques and tools tailored for
managing such heavy-duty software. You can select from among them
those that meet your needs, whether you are a data processing

vii

viii PREFACE

manager, a defense system project leader, a software company
product manager, or a director of software development for a
hardware manufacturer. The methodology presented is fully com-
patible with structured programming and with chief programmer
teams, but it works equally well with or without them.

The book is divided into five parts: background, techniques, tools,
appendix, and references. In the first part you are introduced to con-
cepts that are fundamental to the rest of the book: software as a
product, the life cycle, the phase-function matrix, hierarchical decom-
position. A sample company and a sample software product are
introduced. This company and product are featured throughout the
book to demonstrate how highly correlated the concepts are and how
self-consistent the documents and procedures are. In the second part
each function involved in software production is discussed separately.
The role of each function in every phase of a product’s life cycle is
explored. This organization enhances the book’s value for reference:
you can easily review a single function or you can review a single
phase by studying a selected section of each chapter. The third part
discusses in great detail the semantics and syntax you will need to
implement the book’s methodology in self-consistent plans, specifica-
tions, and reports. Particular emphasis is placed on an integrated set of
design documents that observe a rigorous decomposition of substance
and by life cycle phase. Finally, the fourth part includes a complete
example of the master plan for development of a software product
and the fifth part has a list of references you can use to amplify the
text.

Every technique and tool presented in this book has been success-
fully employed somewhere and many can be employed inde-
pendently of one another. They are fully compatible with structured
programming and chief programmer team concepts. They are based
on top-down, modular design. Because they are tightly correlated, the
more you employ them together the more you will benefit from
synergism as they reinforce one another. Where necessary, you are
cautioned to avoid introducing critical elements too soon or too late
or too fast for assimilation.

Why should you read Management Methodology for Software
Product Engineering instead of or in addition to any of a number of
other books on the management of programming? First, because you
want to produce heavy-duty software and because of that you have
complex communication problems to overcome which texts without a
product orientation fail to acknowledge. Second, because you want
assurance that as you adopt each technique or tool, it will still work

PREFACE ix

after you introduce other techniques and tools. Not only will it
continue to work; it will work better. Lastly, because you want to
adopt a methodology that is founded on sound planning, documenta-
tion, and review principles that assure at the beginning of a develop-
ment project you will not overlook something and have to take costly
corrective action in midstream.

This book is the result of many years of evolution, beginning with
the early work of Kenneth W. Kolence, who first kindled my interest
in software engineering management and later inspired me to
undertake the task of writing the book. As a practitioner of the subject
| found it difficult to make time available for the project, and | owe
thanks to Clair E. Miller and Kornel Spiro for their understanding and
encouragement over the years it took to complete the work. Most of
all I am indebted to my family, who allowed me many evenings and
weekends to work, and especially to my wife Suzanne, who more than
anyone else made it possible for me to finish.

RICHARD C. GUNTHER

Palo Alto, California
January 1978

CONTENTS

Chapter 1 About This Book 1
1.1 What This Book Is and Is Not, 1
1.2 Where To Look for Information 1 lot in
This Book, 5
1.3 How To Read This Book, 6
1.4 How To Apply This Book, 7
PART I BACKGROUND
Chapter 2 Software as a Product 13
2.1 The Product Concept, 14
2.2 The Life Cycle of a Software Product, 16
2.3 Life Cycle Phases and Organizational
Functions, 20
2.4 External Design and Internal Design, 21
2.5 Hierarchical Decomposition, 22
2.6 Development Tools and Product End
Items, 23
Chapter 3 The Sample Company: The ABC Corporation 26
3.1 History and Markets of ABC, 27
3.2 Organization of the ABC Corporation, 27
3.3 Organization of the ABC Computers
Company, 29
3.4 Organization of Research and
Development, 31
3.5 Organization of the Software Products

Department, 32

xi

xii

CONTENTS

3.6 Stereotype Functions in a Real
Organization, 32
Chapter 4 The Sample Product: A$K 34
41 How the Product Came To Be, 34
4.2 The Need for A$K: What It Is, 36
43 A$K as Heavy-Duty Software, 36
4.4 Treatment of A$K in This Book, 37

PART Il TECHNIQUES OF SOFTWARE PRODUCT
ENGINEERING MANAGEMENT

Chapter 5 Managing Software Product Management 41

5l

The Product Concept as a Communications
Tool, 41

5.2 A Top-Down View of Software Product
Management, 42

5.3 Interface Management, 45

5.4 Setting and Meeting Objectives, 46

5.5 Personnel Selection and Training, 48

Chapter 6 Managing Software Product Planr.ing 52

6.1 Types of Plans, 53

6.2 Plans Decomposition, 56

6.3 Organizing for the Planning Function, 57

6.4 Plans for Software Products, 60

6.5 Pilot Systems, 63

6.6 Managing Software Product Planning in the
Analysis Phase, 64

6.7 Managing Software Product Planning in the
Feasibility Phase, 67

6.8 Managing Software Product Planning in the
Design and Programming Phases, 69

6.9 Managing Software Product Planning in the
Evaluation and Use Phases, 69

6.10 Planning’s Review and Approval

Responsibility, 70

CONTENTS

xiii

Chapter 7 Managing Software Product Development 76

7.1

Organizing for the Development
Function, 77

7.2 Chief Programmer Teams, 79

7.3 Time and Cost Estimating, 82

7.4 Project Management, 85

7.5 Managing Software Product Development
in the Analysis Phase, 87

7.6 Managing Software Product Development
in the Feasibility Phase, 91

7.7 Managing Software Product Development
in the Design Phase, 93

7.8 Managing Software Product Development
in the Programming Phase, 97

7.9 Managing Software Product Development
in the Evaluation Phase, 100

7.10 Project Termination, 102

7.11 Development’s Review and Approval
Responsibility, 103

Chapter 8 Managing Software Product Services 105

8.1 The Definition of Services, 105

8.2 Organizing for the Services Function, 106

8.3 Managing Software Product Services in the
Analysis Phase, 107

8.4 Managing Software Product Services in the
Feasibility and Design Phases, 109

8.5 Managing Software Product Services in the
Programming Phase, 111

8.6 Managing Software Product Services in the
Evaluation Phase, 111

8.7 Managing Software Product Services in the
Use Phase, 114

8.8 Services’ Review and Approval
Responsibility, 117

Chapter 9 Managing Software Product Publications 119
9.1 Organizing for the Publications Function, 119
9.2 Standards and Practices, 122

xiv

9.3

9.4

9.5

9.6

9.7

9.8

9.9.

CONTENTS

Managing Software Product Publications in
the Analysis Phase, 124

Managing Software Product Publications in
the Feasibility Phase, 126

Managing Software Product Publications in
the Design Phase, 126

Managing Software Product Publications in
the Programming Phase, 128

Managing Software Product Publications in
the Evaluation Phase, 130

Managing Software Product Publications in
the Use Phase, 131

Publications’ Review and Approval
Responsibility, 131

Chapter 10 Managing Software Product Test

Chapter 11

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

10.10

The State of the Art in Assuring Quality, 133
Types of Software Product Test, 135
Organizing for the Test Function, 138
Managing Software Product Test in the
Analysis Phase, 142

Managing Software Product Test in the
Feasibility Phase, 142

Managing Software Product Test in the
Design Phase, 144

Managing Software Product Test in the
Programming Phase, 147

Managing Software Product Test in the
Evaluation Phase, 149

Managing Software Product Test in the
Use Phase, 153

Test’s Review and Approval
Responsibility, 153

Managing Software Product Support

11.1
11.2

11.3

Organizing for the Support Function, 156
Managing Software Product Support in the
Analysis and Feasibility Phases, 159
Managing Software Product Support in the
Design and Programming Phases, 160

133

155

CONTENTS

Chapter 12

PART 11

Chapter 13

Chapter 14

11.4

11.5

11.6

Managing Software Product Support in the
Evaluation Phase, 164

Managing Software Product Support in the
Use Phase, 166

Support’s Review and Approval
Responsibility, 168

Managing Software Product Maintenance

121

12.2

12.3

12.4

12.5

12.6

Organizing for the Maintenance

Function, 171

Managing Software Product Maintenance in
the Analysis and Feasibility Phases, 173
Managing Software Product Maintenance in
the Design Phase, 175

Managing Software Product Maintenance in
the Programming and Evaluation Phases, 175
Managing Software Product Maintenance in
the Use Phase, 177

Maintenance’s Review and Approval
Responsibility, 178

TOOLS FOR SOFTWARE PRODUCT
ENGINEERING MANAGEMENT

Requirements Contract

13.1
13.2

Requirements Contract Format, 184
Requirements Contract Contents, 184

Other Plans

14.1
14.2
14.3
14.4
14.5
14.6
14.7

Budget, 210

Budget Allocation, 216
Individual Work Plan, 222
Manpower Summary, 225
Configurator, 229
Network Plan, 239
Schedule Notice, 246

XV

170

183

210

xvi CONTENTS
Chapter 15 Specifications 250

15.1 External Specification, 251
15.2 Internal Specification, 267
15.3 Maintenance Specification, 279
15.4 Release Specification, 284

Chapter 16 Reports 290

16.1 Budget Allocation Summary, 290

16.2 Schedule Notice Summary, 293

16.3 Milestones Due Report, 297

16.4 Project Progress Report, 299

16.5 Trend Charts, 301

16.6 Maintenance Request, 305

16.7 Maintenance Request Summaries, 311

Chapter 17 Procedures 317

17.1 Why Procedures Are Needed, 317

17.2 Policies Versus Formats Versus
Procedures, 319

17.3 Procedures Handbook, 320

17.4 Procedures Versus Standards, 320

17.5 Configuration Management, 321

17.6 Programming Standards, 333

17.7 Publications Standards, 333

17.8 Ownership, 335

17.9 Licenses and Contracts, 338

Chapter 18 Review Boards 340

18.1 The Need for Formal Boards, 340
18.2 Interdisciplinary Board, 341

18.3 Technical Review Board, 343
18.4 Enhancement Board, 344

Appendix:
Product Objectives and Requirements for A$K 347
References 367

Index 373

Chapter

1
About This Book

he title of this book, Management Methodology for Software

Product Engineering, suggests that it is a book about managing
software engineering—which it is. But what is software engineering?
The term originated with, or at least was popularized by, the two
conferences sponsored by the North Atlantic Treaty Organization in
1968 and 1969 (1). The science of software engineering has progressed
since then to the point where now, according to Yeh (2), it is an
engineering approach to computer software development encom-
passing programming methodology, software reliability, performance
and design evaluations, software project management, and program
development tools and standards.

1.1 WHAT THIS BOOK IS AND IS NOT

While this book does not claim to cover all of the above mentioned
topics, it does provide planning and control techniques and tools that
discourage poor and encourage good programming methodology and
software reliability, ensure comprehensive and timely design evalua-
tions, and improve and simplify project management. Thus it does
provide an engineering approach to software reliability, design
evaluation, and project management. It does not address itself to
programming methodology, performance evaluation, or program
development tools and standards except to make occasional recom-
mendations and to point to appropriate references for more
information.

This is a book about software products and begins with the assump-
tion that there is a difference between a computer program or a
system of computer programs and a software product. A software
product is a computer program plus all of the planning, documenta-
tion, testing, publications, training, distribution, maintenance, and
control that comprise the aggregate heavy-duty software—software to

1

2 ABOUT THIS BOOK

be installed at more than one site, for use by people not known by the
developers, in ways not anticipated by the developers. Many good
books and articles have been written about the development of
software systems (not software products) for an audience that is the
institutional or corporate data processing or information systems
department. Such works make one or more of the following
assumptions:

e The developer is the user or is at least organizationally related to the
user.

e The user specifies his requirements directly to the developer.

e The user participates in design reviews.

e The software must run on only one or on a very limited range of
hardware configurations.

e The developer installs the software for the user.

e Problems in using the software are resolved by direct interaction
between the user and the developer/maintainer.

Except in the limited case where it is developed on contract for a
single customer, none of the above assumptions is likely to apply to a
software product. Therefore, this book makes assumptions that are
essentially contrary to those above:

e The developer is unacquainted with the user.

e User requirements either are deduced by the developer or are
presented to him by an intermediary, such as a marketing support
organization.

e Users do not participate in design reviews, except possibly when
represented by an intermediary.

e The software must run on a wide range of hardware configurations,
in a wide range of software environments.

e Users install the software themselves or have someone other than
the developer do it for them.

e Problems are resolved by correspondence, sometimes through an
intermediary.

This book, then, is written mainly for an audience interested in pro-
viding and maintaining software for multiple and diverse users who
are continually at arms’ length from the developers and maintainers.
All of these assumptions apply to computer manufacturers and

WHAT THIS BOOK IS AND IS NOI 3

software vendors. Although there is close and frequent interaction
between providers and users of software systems, institutions and cor-
porations with widely distributed computer processing requirements
face many of the distribution, reliability, and control problems
addressed in this book. The data processing manager who serves a
limited, well-known user community can also benefit from this book.
The more of its systems he employs, the better he will serve his users
and the easier it will be for him to expand his services, adding one
system after another.

This book, then, is about software products. About what else is it or
is it not? Well, it is a book on management, not on programming. It is
a book on software engineering, but on how to manage it rather than
on how to practice it. Again, there are many excellent works on
programming, documenting, and testing. There is no attempt to dupli-
cate them here, although several of them are referenced so that you
can find information that is consistent with the management systems
presented here. Consistency is emphasized because it is a key concept
in this book. The book is a collection of management principles, con-
cepts, and practices that have been proven to work somewhere at
some time. But it is much more because each idea embodied in the
book has been designed or reworked to fit an overall grand design in
which all of the tools and techniques reinforce one another. Each can
be taken from the book and used by itself, but if they are taken all
together they synergistically produce a system far more productive
than the sum of the parts.

In a thought-provoking article (3), Nolan hypothesizes a stage
theory for managing computer resources. A stage theory premises that
a system—economic, sociological, galactic—evolves through distinct
stages that can be abstracted into a taxonomy. Such a stage theory
appears to apply to the way the production of heavy-duty software is
evolving. If Mr. Nolan were to study the methodology of heavy-duty
software production as he studied the use of computers, he might
derive a chart like the one shown in Figure 1.1. This figure
hypothesizes three stages: the Age of Programming, the Age of
Software Development, and the Age of Software Engineering. While
an observer of the computer industry might conclude that the
industry as a whole traversed these stages in the periods indicated in
Figure 1.1, he would, observing one heavy-duty software supplier at a
time, see each supplier traverse the three stages in sequence no
matter when the supplier entered the first stage. Said another way, a
stage theory predicts that if the theory applies to a system, it applies to
each member of the system. An objective of this book is to shorten

‘Juswdo|aArap aiemiyos Ainp-Aaeay 10y sisayiodAy a8eis a|qissod v L ainSiy

saAldalqo Aq juswadeuew
pue spoylaw yied [edNn1D
uondnnsuod Suling
u012NIISUOD d10jag
uoNdNIISUOD 310jag

uonejuswajdwi |9A9|-19Yy8IH

A1ojepuepy

paieniuiun ‘Auew AJaA
sisije1dads Ag
ui-paugdisaQg

wea) Jswwesdoud jaiyd
1uapuadapuj
umop-doj

umop-do|

painpNIg

1511} d1eM)JOS

s1onpoud aiemyos
¢-TL6L

spoylaw yied |pdonu)
uo1DNIISUOD 131V
uo1dNIISUOD 21049
QUON

19A9]-19Yy81y ‘A|quiassy

|[PUOISEIDO
paieniul ‘Auepy
1adojanap Ag
1y3noyuayy
wed) 1alouyg
1adojanap Ag
dn-woynog
umop-do|
le|npow
[ol|eied
31emyjos
LZ6L-€96L

dUON
dUON
UOIdNIISUOD 31043g
3UON

Alquiassy

QUON
paieonsiydos ‘may
dUON

paJapisuod JON
110449 |enplAlpu]
QuUON

dn-wonog
dn-wonog
dlYjouow

1511) diempiey
sweidoud 121ndwo))
796L-056L

|o11u0d 139l01g

¢{MOH

HEYM

dAym
Sui)]91 uoneluswndop udisaQg
pasn adengdueq

saueuql oddns
1uawdoaAap Jo asn
195
ERIVVENTIL:IVY
Anjiqerjas pue Ajijigeuieiutey
uoneziuesio UONdINPOId
dueinsse Aljend
ssadoud uondNIsSU0D)
ssadoid udisaQg
poyiaw uondNISU0D)
9duanbas uoND9as 10 uonRIBUIN
paleiaua8 si 1By
pouad [edidulig

Sunaaui8ugy
91em1yos
jo a3y

1uawdojarsQg
91BM1J0S
jo 28y

Suiwweidoiyg
jo
a8y

ainquiy

WHERE TO LOOK FOR INFORMATION NOT IN THIS BOOK 5

the time for you, as a supplier of heavy-duty software, to get from the
Age of Programming to the Age of Software Engineering by describing
and rationalizing many attributes of software engineering. While
following this book’s methodology is not a necessary condition for
reaching the Age of Software Engineering, it is a sufficient condition.

A prominent secondary theme in this book is project management.
Organization of the development function into projects is now so
widely accepted that it is taken for granted here. The concept of chief
programmer teams that became popular in the early 1970s is encom-
passed, but is not a prerequisite. So, in addition to being a general
treatise on software product management, this book is a book on
project management.

1.2 WHERE TO LOOK FOR INFORMATION
NOT IN THIS BOOK

As noted previously, there are many writings on managing software
development and on computer programming. Few on either subject
deal with heavy-duty software, but the percentage of new writings on
these subjects that does deal with heavy-duty software is increasing.
Assuming the trend continues, watch for new titles to appear in the
software engineering series of technical publishers. Watch also the
proceedings of the National Computer Conferences sponsored by the
American Federation of Information Processing Societies, and
conferences sponsored by individual societies such as the Association
for Computing Machinery and the Institute of Electrical and
Electronics Engineers (IEEE). The conferences on software reliability
sponsored by IEEE are particularly good. These societies are also set-
ting up special interest groups on software engineering that publish
papers and sponsor meetings. Organizations like the American
Management Associations are becoming more active in software
engineering. Project management and consulting firms in particular,
are presenting training courses that emphasize the integration of
many of the concepts set forth here. University curricula are still weak
on software engineering; but indeed, according to Mills (4),
“universities have no experience in even knowing what to teach.”
Structured programming and reliability engineering are becoming
more popular in degree programs, and extension programs now offer
courses in management. Teaching management in extension courses
probably will continue to predominate, since the time when such
training is most useful to the recipient is not while he is pursuing a

