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Preface

/A * 3 . ¥ l J_= ~ |
weilunsre Weisheit Einfalt ist,
From “Lohengrin”, Richard Wagner

At the time of the appearance of the first volume of this work in 1967,
the tempestuous development of finite group theory had already made
it virtually impossible to give a complete presentation of the subject in
one treatise. The present volume and its successor have therefore the
mote modest aim of giving descriptions of the recent development of
certain important parts of the subject, and even in these parts no attempt
at completeness has been made.

Chapter VII deals with the representation theory of finite groups in
arbitrary fields with particular attention to those of non-zero charac-
teristic. That part of modular representation theory which is essentially
the block theory of complex characters has not been included, as there
are already monographs on this subject and others will shortly appear.
Instead, we have restricted ourselves to such results as can be obtained
by purely module-theoretical means.

In Chapter VIII, the linear (and bilinear) methods which have proved
useful in questions involving nilpotent groups are discussed. A major
part of this is devoted to the classification of Suzuki 2-groups (see §7);
while a complete classification is not obtained, the result proved is
strong enough for an application to the determination of the Zassenhaus
groups in Chapter XI. The standard procedure involves the use of Lie
rings, and rather than attempting a theory of the connection bétween
nilpotent groups and Lie rings, we give a number of applications to
such topics as the length of the conjugacy classes of p-groups (§9), fixed *
point free automorphisms of nilpotent groups (§10), the restricted
Burnside problem (§12) and automorphisms of p-groups (§13). In many
of these considerations, the finiteness of the group is a relatively unim-
portant condition, and the last two of these applications depend on the
Magnus-Witt theory of the lower central series of free groups, which is
described in §11.

The ground-breaking investigations of P. Hall and G. Higman on
the theory of p-soluble groups form the basis of Chapter IX. These arose .
from the restricted Burnside problem and led first to a solution for
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exponent 6 (see 1.15). Then however there followed far-reaching theo-
rems for composite exponents (4.10,4.13,4.17). Besides various estimates
of the p-length of a p-soluble group in terms of the structure of its Sylow
p-subgroups (§5), we deal with some theorems about fixed point free
automorphisms of soluble groups (§6). Finally we discuss the derived
notion of p-stability, which will be of considerable use in Chapter X.

The three chapters in this volume are thus all concerned with relations
between finite groups and linear algebra, but otherwise they are rather
independent of one another, apart from occasional technical references,
of course.

The authors must apologize for the length of time which readers

have had to wait for this volume. They promise that Volume III will be
available within a matter of months.

It is a great pleasure to thank the many colleagues who have helped

us in the preparation of this volume and its successor. In this respect
the second author must give pride of place to Philip Hall, who first
stimulated his interest in the subject more than 25 years ago by combining
patient encouragement of a naturally pessimistic.student with lectures
of a beauty which seems to be lost to subsequent generations. With the
writing of the book ‘the greatest help was given by W. Gaschiitz and his
associates in Kiel, where each year since 1967 our sketches were read
and exhaustively studied. The participants in these discussions in the
course of the years were H. Bender, D. Blessenohl, W. Caschiitz,
F. Gross, K. Johnsen, O.-U. Kramer, H. Laue, K.-U. Schaller and
R. Schmidt. We are most grateful for the hospitality of the Mathematics
Department in Kiel, without which this kind of work would not have
been possible. Also we are indebted for financial assistance, enabling
the two of us to meet reasonably often, to the National Science Founda-
tion, the Alexander von Humboldt-Stiftung and the University of
Manchester.
“*“In the laborious proof-reading B. Hartley (Manchester), O. Manz,
J. Pense and W. Willems (Mainz) all spent a great deal of time helping
us, and we offer them our most sincere thanks. Also we thank the
Manchester secretaries Kendal Anderson, Rosemary Horton and
Patricia McMunn for the enormous amount of help they have given us
with the typing and preparation of the manuscript.

Finally our thanks are due to Springer-Verlag and to the typesetters

_and printers for their patience with us and for the excellent quality of the
production of this book.

July, 1981 Bertram Huppert, Mainz
Norman Blackburn, Manchester
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Terminology and Notation

In this volume, the same terminology and notation as in Volume 1 will
be used, with the following exceptions.

1. The identity mapping on a set X will be denoted by 1,. i

2. The identity element of the group ® will be denoted by 14 or 1.

3. By a section of a group ® is meant a group of the form $/K, where
RIH <6

4. If X is any algebraic system, Aut X denotes the group of all
automorphisms of X. The group of inner automorphisms of the group
® is denoted by Inn .

5. The set of Sylow p-subgroups of the finite group ® will be denoted
by 5,(®).

6. The lower central series (I11, 2.2) of the group ® will be denoted by

6 =9,(6)> 9,(6) > > 7,(6) > -;

here 7,(®) = [7,-,(®), ®] forn > 1.

7. If ® is a group and m is a positive integer, " = {(x"|x € G).
Thus 6™ < (G™)". \

8. Let A be a commutative ring with identity and let ® be a group.
The group-ring of ® over A (I, 16.6) will be denoted by A®.

9. Let ® be a finite group. The field K is called a splitting field of
® if KG/J(K®) is the direct sum of complete matrix algebras over K,
where J(K®) is the Jacobson radical of K&. Thus by V, 11.2a), K is a
splitting field of ® if and only if K is a splitting field of K&/J(KG).

This definition is not the same as that given in V, 11.2b), but the two
definitions reduce to the same thing when || is not divisible by char K.

10. A K®&-module M is called absolutely irreducible if (i) M is
irreducible and (ii) Hom,g (M, M) = K.

This definition is equivalent to that given in V, 11.8; this is proved in
VI 2.2

11. The unit matrix will be denoted by I.

12. If nis a set of primes, the complementary set of primes is denoted

e Lo e i o
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by n’; thus

’

' = {p|pisa prime, p ¢ n}.

13. If m is a set of primes, the product of ail the normal n-subgroups
of the finite group ® is denoted by O,(®). Thus O,(6) is the maximal
normal n-subgroup of ®. Clearly O,(®) is a characteristic subgroup of
® and 0,(G/0,(6)) = 1. :

More generally, suppose that n,, m,, ... are sets of primes. We
define a characteristic subgroup O, «(®) of ® by induction on i:
fori>'1 :

.....

Os,.....2(0)/0x,.....x,.,(0) = O, (6/0, . . . (6)

Examples. a) The Fitting subgroup of & is [],0,(6).
b) If p is a prime, the upper p-series of & (V1, 6.1) is

1<0,06)<0,,06)<0,,,0)<---

¢) The maximal p-nilpotent normal subgroup of & is O, ,(®). For
if M is a normal p-nilpotent subgroup of ®, the normal p-complement
R of M is a characteristic p’-subgroup of ®. Hence R = 6, & < 0,.(®)
N0, (6)/0,.(6) is a normal p-subgroup and R < 0O, ,(6).

14. 1f n is a set of primes, O”(®) is defined to be the intersection of
all the normal subgroups % of ® for which /% is a n-group. Thus
®/0"(®)is the maximal n-factor group of ®, and O*(®) is a characteristic
subgroup of . e

Example. If  is a p-nilpotent group, O?(®) is the normal p-comple-
ment of ®. ,

15. If % is a free group, a group-basis of § is a subset X of ¥ such
that X generates % and any mapping of X into a group is the restriction
of some homomorphism of . Such a set always exists, by definition of
a free group (1, 19.1): :
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Chapter VII

Elements of General Representation Theory

In Chapter V, classical representation theory was studied. This is the
theory of the group-ring K& and the K&-modules, where K is an alge-
braically closed field of characteristic 0. (Many theorems remain valid
under the hypothesis that K is algebraically closed and that char K does
not divide the order of ®). In this case, K® is semisimple and all K&-
modules are completely reducible. For many purposes it is therefore
sufficient to handle the irreducible representations.
In this chapter we shall study the group-ring K& and the K&-modules
when K is an arbitrary field. Thus we are concerned above all with the
_case when char K = p and p is a prime divisor of the order of the group;
for short we call this the modular case. In this case the Jacobson radical
of KG is non-zero and not all KG-modules are completely reducible.
The number of isomorphism types of irreducible KG-modules is the
p'~class number of ®, as long as K is sufficiently large (§ 3). The irreducible
modules are determined by K&/J(K®), and the divergence of K& from
semisimplicity is determined by J(K®). Unfortunately there is no general
procedure known for the determination of dimy J(K®). But by using the
technique of lifting idempotents from the theory of algebras, certain
facts about the direct decompositions of K® into right ideals and two-
sided ideals can be established (§ 10, 12). The decomposition of K® into
two-sided ideals leads to the theory of blocks and is central for the
further development of the theory; unfortunately no general method for
finding the number of blocks is known. More detailed assertions are
made by taking into account the fact that the group-ring possesses a
certain self-duality, namely, it is a symmetric algebra (§ 11). Among the
consequences of this self-duality is the fact that projective and injective
K®-modules are the same. If

KG =P, ®-- @ P,

is a decomposition of KG into indecomposable right ideals P, then all
types of indecomposable projective K&-modules occur among the P.
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Further, each P, has just one maximal submodule, namely P,J(K®), and
P, has just one minimal submodule S;, which is isomorphic to P/PJ(K®).
Also P, is determined to within isomorphism by S;. Thus the top and
bottom composition factors of F; are known, but the complete composi-
tion structure of P, can only rarely be determined. We therefore restrict
ourselves to the investigation of the multiplicities of the composition
factors of P,. This yields the Cartan matrix C of K®. The calculation of
the elementary divisors of C from the centralizers of the p’-elements of
® is possible by deep theorems of Richard Brauer, which, however, will
not be presented in this chapter.

In this way some information about the indecomposable projective
K®-modules can be obtained, but the general indecomposable K®-
module is almost unapproachable. If char K = p, there is only a finite
number of types of indecomposable K&-modules if and only if the Sylow
p-subgroups of ® are cyclic (§ 5). On the one hand this fact leads in the
further development of the theory to the deep resulis of Brauer and
Dade on groups with cyclic Sylow p-subgroups, but on the other hand
it presents difficulties for the development of the general theory which
have not yet been overcome.

In spite of these difficulties, some useful general facts about K®-
modules have been proved. Among these are the theory of the induced
module and the reciprocity theorems (§ 4), the theorems of Clifford type
about the relations between K®&-modules and K9t-modules for a normal
subgroup N of G (§ 9) and the duality theory of KG-modules (§ 8).

What are the aims of a general theory of group-rings? We mention
here two lines of development.

(1) If ® is a p-soluble group, then the p-chief factors of ® yield
irreducible K&G-modules in a natural way, where K = GF(p). (It is not
very important that K need not be a splitting field for ®, since the theory
of the Schur index is trivial for finite fields.) On the one hand, one would
like to know what place these representations, obtained so directly from
the structure of ®, have in the general theory (§ 15). On the other hand,
abundant knowledge of irreducible K&-modules of a given p-soluble
group ® is often necessary for the construction of more complicated
p-soluble groups.

(2) Another application is much better developed; analogously to
local number theory there is a local theory of the characters of ® over
C. This is developed in the following way.

Let L 'be a field of characteristic 0 with a non-Archimedean valuation,

let o be the ring of integers in L, let p be the maximal ideal of o and let
K = o/p. We choose L large enough to be a splitting field for ®. As in
V, 12.5, each LG-module may be regarded as obtained from an 06-
module by extending the domain of coefficients. If M is an 0G-module,

s
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M/Mp can be made into a K&-module in a natural way. Thus the theory
of K&-modules appears as a first approximation to the theory of 0®-
modules. If o is supposed to be complete with respect to its valuation,
then as in Hensel’s lemma we can build up the 0®-module from the
K®-module by successive approximation. The result is a theory of
characters in o and thus a local representation theory for the prime p.
Amongst other results this yields refinements of the classical ortho-
gonality relations which have been drawn upon for the proofs of deep
assertions about the structure of finite groups. The “local to global”
step from the local theory to a theory of D®-modules, where D is a
Dedekind ring, has been only partially successful up to now. The results
thus obtained have played no part in the structure theory of finite
groups.

The results of this chapter and the consequent modular representa-
tion theory are above all the work of Richard Brauer. Since 1936 he has
systematically built up this theory and made it into a more and more
delicate instrument for the investigation of finite groups.

We shall assume that the reader is familiar with the following simple
facts about projective and injective modules. The proofs may be found
in MACLANE [1]. Let R be an arbitrary ring with 1.

(1) An R-module P is called projective if any diagram

can be completed by adding y; more precisely, if V, W are R-modules,
o € Homg(P, W), f € Homg(V, W) and g is an epimorphism, there exists
y € Homg(P, V) such that & = yf (p. 20).

(2) An R-module is projective if and only if it is a direct summand
of a free module. Any finitely generated projective R-module is a direct
summand of a finitely generated free R-module (p. 21).

(3) If P is a projective R-module and

0->VSISWoSP0
is an exact sequence of R-modules, then there exists an R-submodule
P’ of W isomorphic to P such that W = Va @ P’ (p. 24).
4) If

0-U->V-W-o0
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is an exact sequence of R-modules and P is a projective R-module,
then

0 — Homg(P, U) - Homg(P, V) - Homg(P, W) - 0

is an exact sequence of Abelian groups. If R is a K-algebra, this is an
exact sequence of vector spaces over K (p. 24).

(5) Direct summands of projective modules are projective. Direct
sums of projective modules are projective.

(6) An R-module J is called injective if any diagram

J
\\
R
\\
0 5 V3w

can be completed by adding y; more precisely, if V, W are R-modules,
« € Homg(V, W), B € Homg(V, J) and « is a monomorphism, then there
exists y € Homg(W, J) such that § = ay (p. 92).

(7) An R-module J is injective if and only if any diagram

\
0 » & =» R

can be completed by adding y; here & is a right ideal of R (p. 92).

(8) An injective submodule of an R-module is a direct summand
(p. 92). ;

(9) Direct summands of injective modules are injective. Direct sums
of a finite number of injective modules are injective.

§ 1. Extension of the Ground-Field

In this section we consider the behaviour of group-rings and modules
under extension of the ground field.
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1.1 Defimition. (V, 11.1) Suppose that the field L is an extension of the
field K. i

a) If Wis a K-algebra, then A ®, L becomes an ‘L-algebra, multipli-
cation being given by

(a; ® 41)(a; ® 4,) = a,a, ® 1,4,

for all a, a, jn A and 4,, 4, in L. We denote this algebra by U, . If
{ay, ..., a,} is a K-basis of U and

a,a,- = Z cw,a,,
k=1
with c;; € K, then {a, ® 1, ..., a, ® 1} is an L-basis of %, and
@®bHe;®1) = Z Cinlar @ 1).
k=1

In particular dim, ¥, = dim, . . ' :
b) If V is an ¥-module, the vector space V ®, L becomes an A -
module V_ if we put 325 1 :

v®4i)a® A) =va® Ard,

forveV,ae Aand 4,, 4, € L. We have dim, V, = dim, V.

c) If A is a K-algebra and B is a K-subspace of 2, there is an L-
homomorphism ¢ of B ® L into A ®, L in which bGRAe=b® A
(be B, Ae L) We write im ¢ = B,. Note that ¢ is a monomorphism,
for if T is a K-basis of L, BOL=FPrB®t and AR, L =
Prer¥U @ t. If B is a subring of A, B, is a subring of ¥ ; if B is an
ideal of ¥, B, is an ideal of A, .

1.2 Lemma. Suppose that L is an extension of the field K.
a) If U,, ..., U are K-algebrqs, then ;

D SUY (U D D (Y,

b) If W is a K-algebra and (N), is the complete matrix ring of degree
m over U, then (¥),), = (A),. ;

) If Wis a K-algebra and Y is a two-sided ideal of YU, then (A/3J),
= %/,
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d) If W is a finite-dimensional K-algebra, then J(N), < J(U,).

e) If V and W are N-modules and V 2 W, then (V/W) ® L and
V, /W, are isomorphic U, -modules.

Proof. a) It is easily checked that there is an isomorphism o« of
U, - @ A onto A @D (W such that

((ah ""ak)® l)a = (al ®l’ --'aak ®l) (aiemble L)‘
b) There is an isomorphism B for which
((a;)) ® AN = (a; ® A) (a;€ A e l)
¢) There is an L-algebra epimorphism y of U, onto (A/J), in which
@Ay =@+3I®41 (ae¥U, rel)
IfTisa K-basisof L, A = Per U @ t,s0 kery = X
d) By V, 2.4a), J() is nilpotent. Suppose that J(2)" = 0. Then
(J(A) ) = 0. Thus J(U) is a nilpotent ideal of . Hence by V, 2.4b),

JA), < JA).
e) The proof is similar to that of c). q.e.d.

1.3 Examples. Suppose that L is an extension of the field K.
a) We have (K®), = LG.
By 1.1a), (K®), has the L-basis {g ® 1|ge ®} and

(g, ® (g, ®1) =9:19:® 1.

Hence the mapping « of (K®), into L® given by

(Z g® A‘,)a =Y Ag (4eD)
e ge®
is an L-algebra isomorphism of (K®), onto LG.

b) By 1.2a) and b), for

A

R

k
@ (K)n»

we get immediately
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k
A = P,
i=1
In the following lemma, some elementary facts about fields are

collected for later use.

1.4 Lemma. a) Suppose that 0 # f € K[t] and L is an extension field of
K. Let f = [[i=1 g™ be the decomposition of f in L[] with pairwise non-
associated irreducible polynomials g;. Then

(K[ KDED = LIALL = 69 L[c)/gr L e

b) Suppose K = GF(g) and L; = GF (") (i = 1, 2). Let d be the
greatest common divisor and k the least common multiple of ny and n,.
Then

L,® L, = GF@"H® - ® GF(q"),
with d direct summands on the right.
c) Let L, be a separable extension of K and L, any extension of K.
Then
L L,EF, @ --@F,
where the fields F; are separable extensions of L,.

Proof. a) We have

(KLeJ/F KL = (L @& KEEDAL @« fK[t])  (by 1.20))
= L[t]/fL[e],
The mapping  of L[¢] into @)=, L[t]/g™L[t] given by
ha = (h + gmML[t], ..., h + grL[]) (hel[t])
is obviously an L-algebra homomorphism, and h € ker « if and only if
g divides h for all i = 1, ..., r. Thus kera = f L[¢]. By the Chinese

remainder theorem for the principal ideal ring L[t], the system of con-
gruences



