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PREFACE

We are proud to present the Proceedings of the 6th International Symposium on Catalyst
Deactivation held in Ostend, Belgium from October 3 to 5, 1994, This symposium is a
continuation of the series of symposia on Catalyst Deactivation held in Berkeley, 1978;
Antwerp, 1980; Berkeley, 1985; Antwerp 1987 and Evanston, 1991. It is also an activity of
the Working Party "Chemical Engineering in the Applications of Catalysis" of the European
Federation of Chemical Engineering.

The objective of the symposium is to promote a scientific approach of the phenomenon of
catalyst deactivation which will contribute to the development of catalysts less subject to
structural transformations and more resistant to poisons and coke formation.

These aspects are dealt with in 12 plenary lectures, 48 oral communications and 35 posters,
critically selected from an impressive response to the call for papers.

It is rewarding that both fundamental and applied aspects are dealt with. The deactivation of
catalysts in important industrial processes like fluid bed catalytic cracking, hydrotreatment,
hydrodesulfurization, catalytic reforming, hydrodenitrogenation, steam reforming,
hydrodemetallization, hydrocracking, Fischer-Tropsch synthesis, propane dehydrogenation,
phtalic anhydride synthesis receives considerable attention. Mechanisms of poisoning, sintering
and coking are further investigated and modeled. New experimental techniques for the
characterization and the quantification of the deactivation are also introduced.

Finally, the international character of the symposium is truly impressive : the papers originated
from some 30 countries.

May these Proceedings, like the Symposium itself, contribute to the continued development of
this field of research and to the promotion of contacts between academic and industrial
investigators. We hope that it will be a fertile basis for the 7th International Symposium on
Catalyst Deactivation.

B. Delmon

G.F. Froment
Chairmen

Catalyst Deactivation 1994 was organized by : The Technological Institute of the Royal
Flemish Society of Engineers (TI-K VIV)

The K VIV is the professional organization of the academically trained Flemish engineers, It
represents more than 11,000 members.

In 1940 the Society founded the Technological Institute, with the aim of disseminating
information on scientific and technological development by means of seminars, lectures,
courses, congresses, conferences.

Address . TI - K VIV
Desguinlei 214
B - 2018 Antwerpen
tel 1 +323 216 09 96
fax : +323 216 06 89
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Sintering Kinetics of Supported Metals: Perspectives from a Generalized Power
Law Approach

Calvin H. Bartholomew

Department of Chemical Engineering, 350 CB, Brigham Young University, Provo, Utah
84602 :

Studies of sintering kinetics of conventional supported metal catalysts are reviewed.
Available kinetic data for sintering have been reanalyzed using the new General Power Law
Expression (GPLE), which provides the capability of treating these data in a consistent,
unifying fashion such that quantitative comparisons regarding effects of reaction conditions
and catalyst properties are possible for the first time. It is shown that all available dispersion
versus time data can be fitted to second order GPL kinetics. From the analysis of these data
new conclusions arise regarding the effects of atmosphere, time, temperature, support,
promoters, and metal on the thermal stability of supported metals.

1. INTRODUCTION

Sintering is an important mode of deactivation in supported metals. The high surface area
support (carrier or substrate) in these catalysts serves several functions: (1) to increase the
dispersion and utilization of the catalytic metal phase, (2) to physically separate metal
crystallites and to bind them to its surface, thereby enhancing their thermal stability towards
agglomeration, and (3) in some cases to modify the catalytic properties of the metal and/or
provide separate catalytic functions. The second function is key to the prevention or
inhibition of thermal degradation of the catalytically active metal phase.

Thermally induced deactivation of catalysts is a particularly difficult problem in high-
temperature catalytic reactions. Thermal deactivation may result from one or a combination of
the following: (i) loss of catalytic surface area due to crystallite growth of the catalytic phase,
(ii) loss of support area due to support collapse, (iii) reactions/transformations of catalytic
phases tc noncatalytic phases, and/or (iv) loss of active material by vaporization or
volatilization. The first two processes are typically referred to as "sintering.” Sintering, solid-
state reactions, and vaporization processes generally take place at high reaction temperatures
(e.g. > 500°C), and their rates depend upon temperature, reaction atmosphere, and catalyst
formulation. While one of these processes may dominate under specific conditions in
specified catalyst systems, more often than not, they occur simultaneously and are coupled
processes.

Sintering of supported metals involves complex physical and chemical phenomena
including dissociation/emission of metal atoms from crystallites, diffusion of atoms and
crystallites across support surfaces, spreading of particles, wetting of the support by particles,
nucleation of particles, coalescence and/or bridging of two particles, capture of atoms by
particles, liquid formation, vaporization of metal atoms, and volatilization of metals as
complexes. The importance of these different processes may change with reaction condition
(especially temperature), time, and catalyst formulation (e.g support and/or promoter). The
treatment of sintering processes requires an understanding of surface diffusional processes,
interfacial phenomena, solid-state reactions and the energetics of metal-metal and metal
surface interactions. Most of these processes are only qualitatively understood. Accordingly,
the investigation and simulation of sintering phenomena are difficult tasks. Moreover, thermal



deactivation problems are generally more difficult to prevent and to reverse than other
deactivation problems such as poisoning and carbon deposition.

Nevertheless, efforts to understand, treat, and model sintering/thermal-deactivation
phenomena are easily justified. Indeed, deactivation considerations greatly influence research,
development, design, and operation of commercial processes. While catalyst deactivation by
sintering is inevitable for many processes, some of its immediate, drastic consequences may be
avoided or postponed. If sintering rates and mechanisms are known even approximately, it
may be possible to find conditions or catalyst formulations that minimize thermal deactivation.
Moreover, it may be possible under selected circumstances to reverse the sintering process
through redispersion (the increase in catalytic surface area due to crystaltite division or vapor
transport followed by redeposition).

Studies of sintering and redispersion of supported metal catalysts have been reviewed by
several authors [1-18]; most of these reviews focus on early kinetic studies of sintering of
supported metal catalysts using a simplified power law expression (SPLE). Unfortunately this
crude approach does not permit sintering kinetics to be presented in a consistent way nor does
it enable (1) useful extrapolation of the data to other conditions, (2) useful quantitative
comparisons between different studies, or (3) physically meaningful kinetic parameters to be
obtained. The ultimate result has been confusion regarding the effects of reaction parameters
such as atmosphere and temperature and of catalyst properties such as support, promoters, etc.,
on sintering rates.

Fortunately, a new approach to the analysis of sintering kinetics introduced by Fuentes et
al. [19,20], the "General Power Law Expression (GPLE)," provides for the first time the
capability of analyzing available kinetic data in a consistent, unifying fashion in such a way
that quantitative comparisons regarding effects of reaction conditions and catalyst properties
are now possible. Moreover, a recent Catalytica study [16] and two recently published reviews
[17,18] provide a GPLE analysis of most of the previously published sintering kinetic data.

The purpose of this review is to summarize briefly from the new GPLE perspective what
has been learned from experimental studies of supported metal catalysts regarding the
kinetics of sintering. Companion reviews [17,18] provide more comprehensive analyses of
kinetic data and mechanistic information obtained from model supported catalysts [17]
commercially-relevant real supported metal catalysts [18]. The discussion in this paper
focuses on the effects of atmosphere, temperature and catalyst properties on the kinetics of
sintering of the letter group of catalysts.

2. GPLE ANALYSIS OF AVAILABLE KINETIC DATA FOR SINTERING OF
SUPPORTED METALS

From previous experimental studies of sintering [2,9,11,12] it is evident that sintering and
redispersion are strong functions of temperature, time, atmosphere, and support.
Sintering/redispersion rates are also significantly affected by choice of metal and/or promoter,
metal loading, and catalyst preparation. The discussion below of previous work will focus on
how sintering rates are affected by these variables,

It should also be emphasized that interpretation, comparison, and correlation of previous
experimental studies of sintering and redispersion involving supported metals is complicated
by the following limitations: (1) relatively few of the previous studies were systematic, i.e.
provided statistical data sets carefully defining effects of the important variables, (2) different
experimental methods yielding different measures of average crystallite diameter and
crystallite size distribution were used, (3) there may have been serious problems in the
measurement of dispersion by chemisorption, XRD and TEM in a number of the studies
because workers didn't understand the limitations of their technique, (4) it was assumed in
most previous studies that particles were distributed uniformly through the catalyst, when in
practice the metals may have been distributed in clusters such that local metal concentrations
might have been as much as a factor of 10 higher than the mean [21], (5) the support material



as well as the metal may have undergone thermally-induced changes, (6) the purity, surface
area and pore structure of the support material may not have been specified, and (7) the state of
the metal (whether metal, metal oxide, or salt) was not determined in many of the studies.
2.1.  Correlation of sintering rate data through rate equations
2.1.1. The simple power law expression (SPLE) and its limitations

Sintering rates have been historically correlated by an empirical rate equation involving
either surface area S or dispersion D in a simple power law expression (PLE) of the form:

-d(D/D,)/dt = ks(D/Do » (1 )

where kg is the sintering rate constant, D, the initial dispersion, and n is the sintering order,
which for typical catalyst systems may vary from 3 to 15 [2]. Unfortunately, this simple rate
expression is very limited in its ability to represent experimental data; indeed it is found that
sintering orders vary as a function of time, temperature and atmosphere for the same catalyst
system, For example, plots of log(D./D) versus log(t) for sintering of Ni/silica catalysts in
nitrogen and hydrogen atmospheres (e.g., Fig. 1) illustrate how the slope n varies with time
and temperature from 4 to 15 for a given catalyst and atmosphere [22,23]. Rate constants and
activation energies based on Equation 1 are also a function of the reaction order [2,19]. Thus,
it is not possible to quantitatively compare kinetic parameters from this rate expression
because they are a function of time for the same catalyst even at the same temperature and
functions of time and temperature for the same catalyst at different temperatures; comparison
of data for different catalysts at the same conditions may be invalid since the data are typically
fitted by different sintering orders.

1.50 & 13.5% Ni/Silica, Hydrogen
a 1.00 4
9
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E
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Figure 1. Plot of In (D/D) vs In t for 13.5% Ni/Si0, during sintering in H, [23].

2.1.2. The general power law expression (GPLE) and its application
to available data: first and second order kinetic parameters
A promising solution to the dilemma discussed above is the application of the general
power law expression (GPLE) proposed by Fuentes [19,20],

-d(D/D,)/dt = Ky(D/Do-Deg/Do )™ (2)

which adds a term -Deg/D, to account for the observed asymptotic approach of the typical
dispersion versus time curve to a limiting dispersion Deq at infinite time. The introduction of
this term is physically meaningful since values of dispersion and metal particle size are
generally observed to approach a limiting value with time [24,25]. The GPLE (Eqn. 2) also



