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Preface

The motion of classical mechanical systems is determined by Hamilton’s dif-
ferential equations:
i(t) = 0y H(x(t),y(t))
y(t) = =0, H(x(t),y(t))

For instance, if we consider the motion of n particles in a potential field, the
Hamiltonian function

is the sum of kinetic and potential energy: this is just another formulation of
Newton’s Second Law.

A distinguished class of Hamiltonians on a cotangent bundle 7% X con-
sists of those satisfying the Legendre condition. These Hamiltonians are ob-
tained from Lagrangian systems on the configuration space X, with coordi-
nates (x,1) = (space, velocity), by introducing the new coordinates (r,y) =
(space, momentum) on its phase space T*X. Analytically, the Legendre con-
dition corresponds to the convexity of H with respect to the fiber variable y.
The Hamiltonian gives the energy value along a solution (which is preserved
for time-independent systems) whereas the Lagrangian describes the action.
Hamilton’s equations are equivalent to the Euler-Lagrange equations for the
Lagrangian:

%ai.L(.r(l‘).i'(t)) = 0. L(x(t),2(t)).

These equations express the variational character of solutions of the La-
grangian system. A curve x : [tg,t;] — R™ is a Euler-Lagrange trajectory
if, and only if, the first variation of the action integral, with end points held

fixed, vanishes:
x(ty)

z)‘/tl L(x(t),z(t))dt = 0.

5 x(to)



VI Preface

In other words, solutions extremize the action with fixed end points on each
finite time interval.

This is not quite what one usually remembers from school!, namely that
solutions should minimize the action. The crucial point here is that the min-
imizing property holds only for short times. For instance, when looking at
geodesics on the round sphere, the movement along a great circle ceases to be
the shortest connection as soon as one comes across the antipodal point.

However, under certain circumstances there may well be action minimizing
trajectories. The investigation of these minimal objects is one of the central
topics of the present work. In fact, they do not always exist as genuine solu-
tions, but they do so as invariant measures. This is the outcome of a theory by
Mather and Mané which generalizes Aubry—Mather theory from one to more
degrees of freedom. In particular, there exist action minimizing measures with
any prescribed “asymptotic direction” (described by a homological rotation
vector). Associating to each such rotation vector the action of a minimal mea-
sure, we obtain the minimal action functional

o Hi(X,R)— R

By construction, the minimal action does not describe the full dynamics but
concentrates on a very special part of it. The fundamental question is how
much information about the original system is contained in the minimal ac-
tion?

The first two chapters of this book provide the necessary background on
Aubry-Mather and Mather—Mané theories. In the following chapters, we in-
vestigate the minimal action in four different settings:

1. convex billiards

2. fixed points and invariant tori
3. Hofer’s geometry

4. symplectic geometry.

We will see that the minimal action plays an important role in all four situa-
tions, underlining the significance of that particular variational principle.

1. Conwvez billards. Can one hear the shape of a drum? This was Kac’ pointed
formulation of the inverse spectral problem: is a manifold uniquely determined
by its Laplace spectrum? We do know now that this is not true in full gen-
erality; for the class of smooth convex domains in the plane, however, this
problem is still open.

We ask a somewhat weaker question for the length spectrum (i.e., the set
of lengths of closed geodesics) rather than the Laplace spectrum, which is
closely related to the previous one: how much geometry of a convex domain
is determined by its length spectrum? The crucial observation is that one can
consider this geometric problem from a more dynamical viewpoint. Namely,

' depending on the school, of course. . .
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following a geodesic inside a convex domain that gets reflected at the bound-
ary, is equivalent to iterating the so-called billiard ball map. The latter is a
monotone twist map for which the minimal action is defined.

The main results from Chapter 3 can be summarized as follows.

Theorem 1. For planar convex domains, the minimal action is invariant un-
der continuous deformations of the domain that preserve the length spectrum.

In particular, every geometric quantity that can be written in terms of the
minamal action is automatically a length spectrum invariant.

In fact, the minimal action is a complete invariant and puts all previously
known ones (e.g., those constructed in [2, 19, 63, 87]) into a common frame-
work.

2. Fixed points and invariant tori. We consider a symplectic diffeomorphism
in a neighbourhood of an elliptic fixed point in R2. If the fixed point is of
“general” type, the symplectic character of the map makes it possible (under
certain restrictions) to find new symplectic coordinates in which the map
takes a particularly simple form, the so-called Birkhoff normal form. The
coefficients of this normal form, called Birkhoff invariants, are symplectically
invariant.

The Birkhoff normal form describes an asymptotic approximation, in the
sense that it coincides with the original map only up to a term that vanishes
asymptotically when one approaches the fixed point. In general, it does not
give any information about the dynamics away from the fixed point.

The main result in this context introduces the minimal action as a sym-
plectically invariant function that contains the Birkhoff normal form, but also
reflects part of the dynamics near the fixed point.

Theorem 2. Associated to an area—preserving map near a general elliptic
fized point there is the minimal action «, which is symplectically invariant.

It is a local invariant, i.e., it contains information about the dynamics
near the fized point. Moreover, the Taylor coefficients of the convexr conjugate
«* are the Birkhoff invariants.

Area—preserving maps near a fixed point occur as Poincaré maps of closed
characteristics of three-dimensional contact flows. A particular example is
given by the geodesic flow on a two-dimensional Riemannian manifold. In
this case, the minimal action is determined by the length spectrum of the
surface, and we obtain the following result.

Theorem 3. Associated to a general elliptic closed geodesic on a two-dimen-
sional Riemannian manifold there is the germ of the minimal action, which is
a length spectrum invariant under continuous deformations of the Riemannian
metric.

The minimal action carries information about the geodesic flow near the
closed geodesic; in particular, it determines its C°—integrability.
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In higher dimensions, we consider a symplectic diffeomorphism ¢ in a
neighbourhood of an invariant torus A. If we assume that the dynamics on A
satisfy a certain non-resonance condition, one can transform ¢ into Birkhoff
normal form again. If this normal form is positive definite the map ¢ deter-
mines the germ of the minimal action «, and we will show again that the
minimal action contains the Birkhoff invariants as Taylor coefficients of a*.

3. Hofer’s geometry. Whereas the first three settings had many features in
common, the viewpoint here is quite different. Instead of looking at a single
Hamiltonian system, we investigate all Hamiltonian systems on a symplectic
manifold (M,w) at once, collected in the Hamiltonian diffeomorphism group
Ham(M,w). It is one of the cornerstones of symplectic topology that this group
carries a bi-invariant Finsler metric d, usually called Hofer metric, which is
constructed as follows.

Think of Ham(M,w) as infinite-dimensional Lie group whose Lie algebra
consists of all smooth, compactly supported functions H : M — R with mean
value zero. Introduce any norm || - || on those functions that is invariant under
the adjoint action H +— H o~ Then the Hofer distance of a diffeomorphism
¢ from the identity is defined as the infimum of the lengths of all paths in
Ham(M,w) that connect ¢ to the identity:

1
did ) =int { [ |Hi]de |0l = o).
0

The problem is to choose the norm ||-||. The Hamiltonian system is determined
by the first derivatives of H, but ||dH||co, for instance, is not invariant under
the adjoint action. It turns out that the oscillation norm

I - || = osc := max — min

is the right choice although it seems to have nothing to do with the dynamics.
Loosely speaking, the Hofer metric generates a C'~!~topology and measures
how much energy is needed to generate a given map.

The resulting geometry is far from being understood completely. This is
due to the fact that, despite its simple definition, the Hofer distance is very
hard to compute. After all, one has to take all Hamiltonians into account
that generate the same time—1-map. A fundamental question concerns the re-
lation between the Hofer geometry and dynamical properties of a Hamiltonian
diffeomorphism: does the dynamical behaviour influence the Hofer geometry
and, vice versa, can one infer knowledge about the dynamics from Hofer's
geometry? Only little is known in this direction.

In Chap. 5, we take up this question for Hamiltonians on the cotan-
gent bundle T*T" satisfying a Legendre condition. This leads to convex La-
grangians on TT" for which the minimal action « is defined. On the other
hand, the Hamiltonians under consideration are unbounded and do not fit
into the framework of Hofer's metric. Therefore, we have to restrict them to
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a compact part of T*T", e.g., to the unit ball cotangent bundle B*T", but in
such a way that we stay in the range of Mather’s theory.

Let « denote the minimal action associated to a convex Hamiltonian diffeo-
morphism on B*T". Our main result in this context shows that the oscillation
of a*, which is nothing but «(0), is a lower bound for the Hofer distance. This
establishes a link between Hofer’s geometry of convex Hamiltonian mappings
and their dynamical behaviour.

Theorem 4. If ¢ € Ham(B*T") is generated by a convexr Hamiltonian then

d(id, ¢) > osca™ = «(0).

4. Symplectic geometry. Consider the cotangent bundle T*T" with its canon-
ical symplectic form wy = dA. Here, A is the Liouville 1-form which is y dx in
local coordinates (x,y). Suppose H : T*T" — R is a convex Hamiltonian. Be-
cause H is time—independent the energy is preserved under the corresponding
flow, i.e., all trajectories lie on (fiberwise) convex (2n — 1)-dimensional hyper-
surfaces X = {H = const.}. Of particular importance in classical mechanics
are so—called KAM—tori. i.e., invariant tori carrying quasiperiodic motion.
These are graphs over the base manifold T", with the additional property
that the symplectic form wy vanishes on them; submanifolds with the latter
property are called Lagrangian submanifolds.

We want to study symplectic properties of Lagrangian submanifolds on
convex hypersurfaces. To do so, we observe that a Lagrangian submanifold
possesses a Liouville class a,4, induced by the pull-back of the Liouville form
A to A. The Liouville class is invariant under Hamiltonian diffeomorphisms,
i.e., it belongs to the realm of symplectic geometry. On the other hand, be-
ing a graph is certainly not a symplectic property. Our starting question in
this context is as follows: is it possible to move a Lagrangian submanifold A
on some convex hypersurface X~ by a Hamiltonian diffeomorphism inside the
domain Uy, bounded by X7

In a first part, we will see that, under certain conditions on the dynamics
on A, it is impossible to move A at all; we call this phenomenon boundary
rigidity. In fact, the Liouville class a4 already determines A uniquely.

Theorem 5. Let A be a Lagrangian submanifold with conservative dynamics
that is contained in a convex hypersurface X, and let K be another Lagrangian
submanifold inside Us,. Then

ap=axg <— A=K.

What can happen if boundary rigidity fails? Surprisingly, even if it is pos-
sible to push A partly inside the domain Uy, it cannot be done completely.
Certain pieces of A have to stay put, and we call them non-remowvable inter-
sections. In the case where X' is some distinguished “critical” level set, these
non-removable intersections always contain an invariant subset with specific
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dynamical behaviour; this subset is the so—called Aubry set from Mather-
Mané theory. This result reveals a hidden link between aspects of symplectic
geometry and Mather-Mané theory in modern dynamical systems.

Finally, we come back to the somewhat annoying fact that the property
of being a Lagrangian section is not preserved under Hamiltonian diffeomor-
phisms. For this, we consider

Theorem 6. Let U be a (fiberwise) convex subset U of T*T". Then every
cohomology class that can be represented as the Liouville class of some La-
grangian submanifold in U, can actually be represented by a Lagrangian sec-
tion contained in U.

So, from this rather vague point of view at least, Lagrangian sections actually
do belong to symplectic geometry.

Furthermore, the above result allows symplectic descriptions of seemingly
non-symplectic objects: the stable norm from geometric measure theory, and
also our favourite, the minimal action.

Theorem 7. The stable norm of a Riemannian metric g on T™, and the min-
imal action of a convex Lagrangian L : TT" — R, both admit a symplectically
mvariant description.

This closes the circle for our investigation of the Principle of Least Action
in geometry and dynamics.
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1

Aubry—Mather theory

The Principle of Least Action states that, for sufficiently short times, tra-
jectories of a Lagrangian system minimize the action amongst all paths in
configuration space with the same end points. If the time interval becomes
larger, however, the Euler-Lagrange equations describe just critical points of
the action functional; they may well be saddle points.

In the eighties, Aubry [5] and Mather [64] discovered independently that
monotone twist maps on an annulus possess orbits of any given rotation num-
ber which minimize the (discrete) action with fixed end points on all time
intervals. Roughly speaking, the rotation number of a geodesic describes the
direction in which the geodesic, lifted to the universal cover, travels. Those
minimal orbits turned out to be of crucial importance for a deeper under-
standing of the complicated orbit structure of monotone twist mappings.

Later, Mather [69] developed a similar theory for Lagrangian systems in
higher dimensions. There was, however, an old example by Hedlund [41] of
a Riemannian metric on T2, having only three directions for which minimal
geodesics existed. Therefore, Mather’s generalization deals with minimal in-
variant measures instead of minimal orbits.

A different approach was suggested by Mané [62] who introduced a certain
critical energy value at which the dynamics of a Lagrangian systems change.
It turned out that this approach essentially contains Mather’s theory, but in
a more both geometrical and dynamical setting.

We will deal with these generalizations of Aubry—Mather theory to higher
dimensions in Chap. 2.

1.1 Monotone twist mappings
Let
S x (a,b) € S' x R =T*S!
be a plane annulus with §' = R/Z, where we allow the cases a = —oc or
h = +oc (or both). Given a diffeomorphism ¢ of S! x (a. b) we consider a lift ¢
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of ¢ to the universal cover R x (a.b) of S! x (a,b) with coordinates x, y. Since
o is a diffeomorphism, so is o, and we have 5(.1' + 1,y) = CN)(I.]/) + (1,0). In
this section, we will always work with (fixed) lifts for which we drop the tilde
again and keep the notation ¢.

In the case when a or b is finite we assume that ¢ extends continuously to
R x [a, b] by rotations by some fixed angles:

o(r,a) =(x+w_,a) and o(r.b) = (x4 wy,b). (1.1)

The numbers wy are unique after we have fixed the lift. For simplicity, we set
we =t if a = —o0 or b= .
Definition 1.1.1. A monotone twist map is a C'' ~diffeomorphism
¢:R x (a,b) — R x (a,b)
(-Tu-yn) g (.1'1.y1)
satisfying ¢(xg + 1,y0) = ¢(xo,yo) + (1,0) as well as the following conditions:

1. ¢ preserves orientation and the boundaries of R x (a,b), in the sense that
y1(zo, yo) — a,b as yo — a, by
2.4f a or b is finite ¢ extends to the boundary by a rotation, i.c., it satisfies

(1.1);
3. ¢ satisfies a monotone twist condition
or
— (1.2)
Jyo

4. ¢ is exact symplectic; in other words, there is a C?function h, called a
generating function for ¢, such that

y1 dry — yo dag = dh(xp, 7). (1.3)

The interval (w_,wy) C R, which can be infinite, is called the twist interval
of 0.

Remark 1.1.2. The twist condition (1.2) states that images of verticals are
graphs over the x-axis; see Fig. 1.1. This implies that ¢ can be described
in the coordinates x,x; rather than x(,y,. In other words, for every choice
of r-coordinates xy and x; (corresponding to the configuration space), there
are unique choices yy and y; for the y-coordinates (corresponding to the
velocities) such that the image of (xg,yo) under ¢ is (xy,91).

Remark 1.1.3. A generating function h for a twist map ¢ is defined on the
strip

{€,n)eR? |w_ <n—€E<wy}
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Fig. 1.1. The twist condition

and can be extended continuously to its closure. It is unique up to additive
constants. Equation (1.3) is equivalent to the system

O1h(xo,r1) = —yo (1.1)
Ooh(xo,21) = 1
Here, the expression 0; denotes the partial derivative of a function with respect
to the i—th variable. The equivalent of the twist condition (1.2) for a generating
function is
010xh < 0. (1.5)

Finally, a generating function satisfies the periodicity condition h(§+1. 7+

1) = h(&,n).

Monotone twist maps are not as artificial as they might seem. They ap-
pear in a variety of situations, often unexpected and detected only by clever
coordinate choices. In the following, we give a few examples. The reader my
consult

FExample 1.1.4. The simplest example is what is called an integrable twist map
which, by definition, preserves the radial coordinate!. In this case, the prop-
erty of being area—preserving implies that an integrable twist map is of the
following form:

é(o,y0) = (o + f(yo)-Yo)

with f > 0. Then the generating function (up to additive constants) is given
by

! In the context of integrable Hamiltonian systems, this means that (z,%) are al-
ready the angle-action—variables.
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h = h(x; — x0),
with h' = f~!; in other words, h is strictly convex.

Ezxample 1.1.5. In some sense the “simplest” non-integrable monotone twist
map is the so—called standard map

k k
o (x,y) — (.1' +y+ —sin27x,y + — sin 27r.1-)
21 2m

where k > 0 is a parameter. This map has been the subject of extensive
analytical and numerical studies. Famous pictures illustrate the transition
from integrability (k = 0) to “chaos” (k = 10).

Exrample 1.1.6. A particularly interesting class of monotone twist maps comes
from planar convex billiards; we will deal with convex billiards in Chap. 3.
The investigation of such systems goes back to Birkhoft [15] who introduced
them as model case for nonlinear dynamical systems; for a modern survey see
[101].

Fig. 1.2. The billard in a strictly convex domain

Given a strictly convex domain {2 in the Euclidean plane with smooth
boundary 02, we play the following game. Let a mass point move freely inside
(2, starting at some initial point on the boundary with some initial direction
pointing into 2. When the “billiard ball” hits the boundary, it gets reflected
according to the rule “angle of incidence = angle of reflection”; see Fig. 1.2.
The billiard map associates to a pair (point on the boundary, direction), re-
spectively (s,v) = (arclength parameter divided by total length, angle with
the tangent), the corresponding data when the points hits the boundary again.
The lift of this map, which is then defined on R x (0, ), is not a monotone
twist map.
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However, elementary geometry shows [101] that the map preserves the
2-form
sinty) dyp A ds = d(— cosv) A ds.
Hence the billiard map preserves the standard area form dx A dy in the new
coordinates
(z,y) = (s,—cosy) € R x (—1,1).
Moreover, if you increase the angle with the positive tangent to df2 for the
initial direction, the point where you hit 92 again will move around 942 in
positive direction. This means that
(‘).1'1
(‘)’.I/[)
so the billiard map in the new coordinates does satisfy the monotone twist
condition.

> <

\/\—/——\/\/

N //_m”
S IS AN
/\/\

|

Fig. 1.3. The phase portrait of the mathematical pendulum

Example 1.1.7. Consider a particle moving in a periodic potential on the real
line. According to Newton’s Second Law, the motion of the particle is deter-
mined by the differential equation

() = V'(x(t)).
This can be written as a Hamiltonian system
{ru) = O, H (x(t). y(t))
y(t) = =0, H(x(t). y(t))
with the Hamiltonian H(x,y) = y*/2—V (x). For small enough ¢ > 0, we have

ox(t:x(0),y(0)) 0

/ a(7;2(0),y(0)) dr

dy(0) —9y(0) Jo
_ /wdT
—J dy(0)

> 0.
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Therefore the time—t-map ¢, is a monotone twist map provided ¢ is small.
In fact, this holds true not only for Hamiltonians of the form “kinetic energy
+ potential energy”, but for more general Hamiltonians which are fiberwise
convex in the second variable (corresponding to the momentum).

A particular case is that of a mathematical pendulum where x is the
angle to the vertical and V'(x) = — sin 2wx. The phase portrait in R x R, see
Fig. 1.3, shows two types of invariant curves: closed circles around the stable
equilibrium (“librational” circles), and curves homotopic to the real line above
and below the separatrices (“rotational” curves).

Note that, by the monotone twist condition, an orbit ((a;,y;))icz of a
monotone twist map ¢ is completely determined by the sequence (x;);ez via
the relations

Yi = 82h(;l?i,1 s J',’) = —01}1((17,', Li41 )

Similarly, an arbitrary sequence (&;);ez corresponds to an orbit of a monotone
twist map ¢ if and only if

Dah(&i-1,&) + 01h(&, 1) =0 (1.6)

for all ¢ € Z. Thus, on a formal level, orbits of a monotone twist mapping may
be regarded as “critical points” of the discrete action “functional”

(E)iez — > M(& &)

i€Z

on R%. This point of view leads to the following notion of minimal orbits.

1.2 Minimal orbits

Let ¢ : (x0,y0) — (x1,%1) be a monotone twist map with generating function
h(xo,x1). We have seen above that the ¢-orbit of a point (z¢,yp) is com-
pletely determined by the sequence (x;) of the first coordinates. Moreover, an
arbitrary sequence (&;) corresponds to an orbit if, and only if, it satisfies the
recursive relation (1.6). Loosely speaking, orbits are “critical points” of the
action “functional”
(i)icz — Y h(&, &),
iE€EL

In this section, we are interested in minima, i.e. in points which minimize the
action.

This, of course, makes only sense if we restrict the action of a sequence
(& )iez to finite parts. In analogy to the classical Principle of Least Action,
we define minimal orbits in such a way that they minimize the action with
the end points held fixed.



