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PREFACE

_ This book has arisen out of a course in vibration analysis which has
been offered for several years by the Department of Engineering
Mechanics of the University of Michigan. This course is the first of a
series which treat the theory of mechanical vibrations and its applica-
tion to engineering problems. -The aim of this first course has been
to present the fundamentals and basic theory in a manner readily
understood by the undergraduate, and yet, at the same time, on a plane
acceptable to the graduate student. :

Many excellent treatises are available which treat the theory of
vibrations and its applications to engineering problems, and they serve
as invaluable references for a student of this subject. However, with
the increased demand by industry for engineers trained in the technique
of vibration analysis and the resulting increase in the number of
universities offering training in this subject, there appears to be a need
for a treatment of vibrations designed primarily as a textbook; particu-
larly a textbook that covers the all-important basic principles in a
thorough fashion and yet is suitable for a student who has had nothing
more than an elementary course in dynamics and the standard instruc-
tion in mathematics offered to undergraduate engineering students
today. It is our sincere hope that this book will help to fill the need
for a suitable textbook in this expanding field of applied mechanics.

A conscious effort has been made to present the theory in such a
manner that it can be extended with ease to all the various and diverse
vibration problems which the practicing engineer has come to know.
An equally sincere effort has been made to avoid the extension in
detail to specific problems, which is counter to the purpose of this
book. Specific applications therefore have been considered only as a
vehicle in demonstrating the theory and general technique. Con-
siderable effort has been made to insure that the content of the book

. will be as broad as space permits. ‘I'he necessity of keeping a textbook
within reasonable size has forced us to select the material carefully.
The inevitable decision as to the methods and topics to be included
and those to be omitted has been made as judiciously as our experience,
in teaching will permit. 1 .
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We firmly believed that it is essential for the student to obtain some
confidence in his ability to set up a problem from its basic elements as
well as to know how to solve the equations that arise in v1brat10n
analysis. The confidence on the part of the student that “he can.
get started,” more than anything else, removes the ‘“mystery’’ from
vibration problems. Since the student is frequently able to picture
the results better through a sketch or graph than by the manipulation
of an equation, rather extensive use has been made of figures. The

- student is urged to portray his results graphically whenever it is appro-
priate. 'Many problems have been included on the theory that the ’
student learns best through application. The problems have been
graduated in difficulty to increase their value as a vehicle with which
to master the theory.

The book is divided into three parts The ﬁrst deals with steady-
state vibrations of systems of one degree of freedom.  As these sys-
tems are of fundamental significance in most forms of - -vibration, a
considerable amount of space has been devoted to their treatment.
The second part extends the theory to systems of several degrees of
freedom. The theory has been discussed from the, classical stand-
pomt although emphasis has been placed on the extremely useful

“mobility”’ concept. The third part consists of an introduction to
special topics which are an essential part in a more general and more
refined analysis of vibration problems. Although a thorough discus-
sion of these topics is beyond the scope of this book, we believe that
an introduction to these subjects is desirable to form a link between
the idealized and more precise theories. These topics include non-
linear systems, systems with distributed physical characteristics, and
systems subjected to transient motions.

A textbook of an elementary nature cannot be expected to include
any new theories or specialized applications; however, the following
items have been treated in a manner which is either new or considered
to be an improvement over the usual presentation.

1. The concept of relaxation frequency and its physical meaning
has been introduced and the concept used throughout.

2. The use of equivalent springs, dampers, and masses as well as
dimensionless para.meters has been stressed in the analysis of complex
problems.

3. Energy methods in general and Rayleigh’s method in particular
have been discussed and used extensively in certain applications.

4. The mobility method has received extensive treatment. The use
of velocity as a parameter, preferable, when dealing with problems of
sound transmission, fluid flow, and electric currents, has been replaced
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by a displacement parameter, which has a more direct mgmﬁcance in
mechanical vibrations.

5. The solution of the frequency equation has been given consider-
able attention.

It the course of the development of this book we have inevitably
' been influenced by the classic works of Timoshenko, den Hartog, and
others. These works and the teachings of these pioneers in vibration
analysis have furnished the prime motivation for the present volume.
A particular tribute is due to Mr. F. A. Firestone, whose paper,
“Mobility Method,” in the Journal of Applied Physics; June, 1938,
represents the initial incentive for the development and adaptation
of this method in this book. We are especially thankful to Mr. T. A.
Hunter, who read the manuscript and made many valuable sugges-
tions. Much credit is also due to Professor E. L. Eriksen, who lent
constant encouragement. We are further indebted to Mr. R. E.
Peterson of the Westinghouse Electric Corporation for the frontispiece.

H. M. Hansen
Paul F. Chenea
Ann Arbor, Michigan :
February 1952
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TABLE 1
Quantity

Ares,

Amplitude

Acceleration

Amplitude per unit force

Wave velocity

Damping constant in translation
Damping constant in rotation
Speeg of sound

Distance to centroid

Critical damping constant
Diameter

Diameter

Young’s modulus

Energy

Base of natural logarithms = 2.71828
Eeccentricity

Dissipation function

Force

Elliptic integral of the first kind
Frequency

Shear modulus

Acceleration gravity = 386 inches per second?
Dynamic product of inertia (cross product)
Height or depth

Moment of inertia (mass)

Moment of inertia (area)

Dynamic moment of inertia

Impulse

Index number

Moment of inertia (mass)

Polar moment of inertia (area)

-Imaginary unit j2 = —1

Complete elliptic integral of first kind

Spring constant in translation

Spring constant in rotation

Length

Length

Mass

Moment of a force

Momentum

Mass

Index number

Gear ratio

Force

Natural circular frequency

Pressure ° :

Force

Discharge

Relaxation frequency

Generalized coordinates

Reaction

Radius

Radius

Radius of gyration

Tension

Kinetic energy

Torque

Time

Tension

Time

Energy :
ix

Dimensions
FLT MLT
L2 L2
L L
LT3 LT2
F-1L M—1T3
LT LTt
FL\T MTr2
FLT ML2T—1
LT LT
L L

See Damping constant
L L

L L
“FL—2 MLT—2
FL ML2T~?
2 Dimensionless
FLT! ML2T—3
F MLT-*
T-1 Tt
FL—2 ML—T—?
LT—? LT
FL ML2T—2
L S 5}
FLT? ML?
L* L*
FL M L1272
FT MLT
Dimensionless
FLT? ML?
L# L*
Dimensionless
FL—! MT—?
FL ML2T~*
L L
L L
*PLATA M
FL ML2T—?
FT MLT
FL7T2 M
Dimensionless
Dimensionless
F MLT—?
T"l T—).
FL—2 MLT*
F MLT—*
. L3711 L3r—:
T“l T—l :
F MLT?
L L
L L
L L
F MLT-?
FL. ML2T—2
FL ML2T—2
T T
F MLT-?
i il
FL ML2T-
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TABLE 1 (Continued)
Quantity

Displacement

Potential energy

Veloeity

Volume

Shear force

Velocity

Total complex displacement
Work

Work per cycle

-Weight

Power

Specific weight

Complex displacement per unit force
Force in z direction
Coordinate

Displacement in z direction
Force in y direction
Coordinate

Displacement in y direction
Total impedance

Force in z direction
Coordinate

Displacement in z direction
Impedance

Angular acceleration
Angle

Frequency ratio
Angle

Specific gravity
Angle

Frequency funetion
Determinant
Displacement

Static deformation
Strain ;

Angular amplitude
Angle

Angular amplitude per unit torque
Coefficient of friction
Absolute viscosity
Poisson’s ratio
3.14159

Density

Stress

. Period

Time

Friction angle
Angle

Angular amplitude
Angle

Angular velocity
Angular velocity
Circular frequency

Dimensions

L L

FL ML2T2

LT LT

L? 12

F MLT—?

LT LT

FL ML2T-2

FL ML2T-2

F MLT-?

FLT ML2T-3

FIL ML—2T—*

F MLT-?

L L

L L

F MLT—?

L L

L L

F MLT—?

L L

L L

T-2 T-%
Dimensionless
Dimensionless
Dimensionless
Dimensionless
Dimensionless

L L

L L
Dimensionless
Dimensionless
Dimensionless :

F-1— M—L—2T2
Dimensionless

FL—2 i ML T
* Dimensionless
Dxmensmnloss

FL-41R

FL—? M L— T-2

T &

T T
Dimensionless
Dimensionless
Dimensionless
Dimensionless
Dimensionless

-1 =1

T-1 s

= T



1
1.2
1.3
1.4
1.5

2.1

2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
43
4.4
4.5
4.6

5.1
5.2
5.3
5.4
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GENERAL CONCEPTS

‘1.1 Introduction

Vibratory motions oceur to some degree in practically every struc-
tural and mechanical device known to man, such as vehicles, machin-
ery, bridges, and buildings. In the great majority of these instances,
the vibration is of too small a magnitude to cause any concern. “There
are, however, numerous examples where vibrations are sufficiently
dangerous to cause failure of structures which otherwise would have
operated satisfactorily. Examples of such failures are found in broken
crankshafts, failure of turbine blades, fracture of springs (Fig. 1-1),
destruction of buildings due to earthquakes, and destruction of bridges
due to vibrations induced by the wind.

" Vibration is sometimes objectionable because of its effect on human
comfort or its interference with the operation of delicate instruments.
In these cases, structural failure may never occur, but the human dis-
comfort or the inability of instruments to function properly make it
mandatory that some form of vibration control be utilized.

In still other instances, vibrations may be essential to the operation
of machines, shaking devices such as grain separators, or musical
instruments, Such machines and instruments must be designed so
that the finished product has the proper periodic motion. Not infre-
quently, the design problem is one of eliminating a particular vibratory
motion while another is amplified. Many instruments designed to
measure frequency are based upon properly tuned vibratory motions,
and in other machines, such as fatigue-testing apparatus, vibration is
employed to produce stress reversals in the test specimen, with a mini-
mum of power input.

In all of these mechanical systems, regardless of whether the vibra-
tion is to be eliminated because of its objectionable stresses or human
discomfort, or whether it is to be merely altered as a desirable feature,
the first step is an analysis of the vibratory motion and an under-

1



2 GENERAL CONCEPTS

standing of its characteristics. Only after an investigation of the
pertinent properties of the vibration can an intelligent procedure be
formulated to accomplish the desired change. 'It is the analysis of
these fundamental properties of vibratory motion with which this
book is concerned.

1.2 Examples of Vibratory Systems

As in other engineering topics, the introduction to a new subject is
most easily made through the study of idealized elementary examples.
This is a justifiable procedure because many of the mote comvlex
problems of vibration analysis can be replaced by a combination of
elementary systems without appreciable sacrifice in accuracy. A
vibratory system is usually understood to be a combination of ele-
ments which, either by interaction, or through the action of external
forces, are able to sustain a periodic oscillating motion. In mechanical
vibration these elements can be divided into three characteristic types
which may be referred to as masses or inertia elements, springs or
elastic elements, and resistors or damping elements. Of these, the
first two, masses and springs or their equivalents, are able, by inter-
action, to produce and sustain oscillation while the third type, the
damping elements, act as a deterent on the motion. In reality, all
these characteristics are present in all mechanical parts, as any such
part possesses mass which is to some degree elastic and which will.in
addition absorb some energy by being deformed. However, it is
usually possible in practice to deal with a mechanical vibratory system
as if it were made up of a number of idealized elements, each of which
represents only one of the characteristic types which effect the energy
distribution of the system in a specific manner.

The three characteristic elements as used in vibration analysis may
be defined as follows:

Mass element

The mass element is assumed to be an inelastic solid or an incom-
pressible and non-viscous fluid. It is therefore able to act only as an
inertia and as such can gain or lose kinetic energy according to the
manner in which its velocity is changed.

Spring element

The spring or elastic element is assumed to be without inertia and to
resist deformation or displacement in such a manner that the work done
in producing the deformation or displacement is conserved by the
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element in the form of potential energy until the work stored is recov-
ered by a return to the initial shape or position.

The mass and spring elements together constitute in this idealized
form a conservative system in which any energy stored in the mass
due to its state of motion (kinetic energy) and any energy contained in
the spring element or its equivalent due to its deformation or dis-
placement (potential energy) can be completely recovered. The
constant interchange of kinetic energy from the mass element to
potential energy in the spring element is fundamental in most vibra-
tory systems.

The spring may take the form of any elastic body. Common
examples are a bent beam, a coiled spring, a twisted shaft, and an air
or rubber cushion. The pull of gravity or the buoyancy exerted by a
fluid on a floating body are likewise equivalent to a spring.

Damper

The third element common to all vibratory systems is a damper. A
damper is any device that dissipates energy from the vibratory system.
The damper gives rise to a force called the damping force which at all
times resists the motion. The damping force dissipates mechanical
energy which is usually converted to heat, thus depleting the mechani-
cal energy of the system. Dampers that employ dry friction are
called “friction dampers’” and dampers that employ fluid friction are
generally denoted as ‘‘viscous dampers.”

The object of much modern engineering is to decrease frictional
resistance in machines and instruments, as this resistance wastes
energy and hinders performance. This same frictional resistance is
the most common form of damping, and therefore many machines
~ have extremely small damping forces associated with their operation.
For this reason, the damping is frequently of small effect, and the vibra-
tion analysis is simplified by neglecting damping forces.

- With these _hree basic elements in mind, all vibratory systems may
be constructed. Consider the simple case of a mass suspended by a
common coil spring, as shown in Fig. 1-2. The spring and mass in this
system are easily recognized. The damping forces arise from the
resistance of the air to the motion of the mass and spring as well as
the internal resistance in the spring called hysteresis damping.. The
damping forces are usually small in this system.

As a second example, consider the simple or mathematical pendulum,
as shown in Fig. 1-3. The ball constitutes the mass element whereas
the equivalent of the spring in this example is the pull of gravity.
The action of the force of gravity is always such as to restore the mass
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to the equilibrium position in which the pendulum hangs vertical.
The damping forces are produced by the resistance of the air to the
motion of the mass and string.

Another example is a vessel bobbing up and down in the water
(Fig. 1-4). The mass is that of the vessel and the spring equivalent is

Fra. 1-2 Fie. 1-3

=3/

Fic. 1-6 Fic. 1-7

the buoyancy of the water and the force of gravity acting together.
The damping is partly air resistance and partly fluid friction.

Other simple systems are shown in Figs. 1-5, 1-6, and 1-7. The -
systems shown in Figs. 1-8 and 1-9 involve .a combination of springs
and dampers in the form of dashpots. By suitably combining masses
or inertias with springs and dampers, complex systems may be con-
structed which, to a high degree of approximation, represent the actual
mechanical system to be analyzed. It is through the use of these
idealized systems that many engineering problems are solved. In
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those instances where idealized systems do not yield results to a
sufficient degree of accuracy, more advanced methods are required.
Some of these advanced methods are discussed in Part 8 of this book.

Fia. 1—9

1.3. Fundamental Definitions

As with any well-cultivated subject, there is a large number of
special terms and phrases used in discussing vibration analysis which
have been given precise meanings. It is essential that the meanings
of the more important words and phrases be known well as they will be
used throughout the text. Some of the more common terms together
with their definitions follow.

Vibration

A vihration or a vibratory motion may be defined as a motion that is
periodic. The motion consists of an oscillation about an equilibrium
position in such & manner that it repeats itself in definite intervals of
time. The graph of such a motion is shown in Fig. 1-10.

f\/\/\

VV\

F1c. 1-10

Free vibration

A vibration that is independent of outside forces is said to be free.
Free vibrations are frequently called natural vibrations.



6 GENERAL CONCEPTS

Forced vibration

Vibrations that are caused and maintained by a periodic disturbing
force are called forced vibrations.

One degree of freedom

A body is said to vibrate with one degree of freedom when its posi-
tion may be completely defined by only one coordinate at any given
instant.

Two or more degrees of freedom

A body or a system of bodies that requires two or more coordinates
to define completely its configuration is said to have two or more
degrees of freedom. In general, the number of degrees of freedom of a
body or system of bodies is equal to the minimum number of coordi-
nates required to define completely the configuration of the body, or
the system of bodies, at any given time.

Amplitude

The amplitude of a vibration is the maximum linear or rotational
displacement from the equilibrium position that occurs during a com-
plete cycle of the motion.

.

Period

The period of a vibration is the time required to execute one com-
plete cycle or oscillation.

Frequency

The reciprocal of the period is called the frequency. The frequency
represents the number of cycles completed in a unit of time.

These are the basic terms of vibration analysis. Other terms which
have specific meanings will appear, but these more complex terms
are best-defined when they enter intd the development of the theory.

1.4. Dimensions and Units

In the study of the physical sciences a so-called absolute system of
units is employed. This system is based upon the fundamental
dimensions of length L, mass m, and time 7. The engineer finds it
somewhat more convenient to use what is known as the gravitational
system of units which is based on the fundamental dimensions of
length L, force F, and time 7. In each system all of the other quanti-
ties that arise in the study of mechanics may be expressed in terms of
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the three basic dimensions. The two systems of units are related
through Newton’s second law of motion,

F = ma

where a is the acceleration. This may be written dimensionally as

L
For m o = mLT 2 - (1.4-1)
This basic law of mechanics gives another fundamental dimensional

equality when solved for m,
FT? B

When the “engineer’s” or gravitational system of units is em-
ployed, the pound is taken as the unit of force, the foot as the unit of
length, and the second as the unit of time. The unit of mass becomes
pounds second?® per foot. It is natural to express the unit of mass in
terms of the weight W of the body through the relation

W = mg

where g is the acceleration of gravity, whence

m=—

g
Since the acceleration of gravity has a value of 32.2 ft per sec?, the
unit mass is a body weighing 32.2 Ib. This unit of mass has been
denoted as the “slug.” More often the gravitational acceleration
is stated in terms of an inch unit of length giving g = 386 in. per sec?.
The corresponding unit of mass has a weight of 386 Ib and may be
called the “inch slug.”

Certain significant quantities are involved in vibration analysis.
These quantities are in part characteristics of the vibratory motion
and in part characteristics of the elements of the particular vibrating
system. The main characteristics of the vibratory motion are defined
in the previous section. The two principal characteristics of the ele-
ments of a vibrating system other than the mass are the spring constant
and the damping constant. Z

The soring constant is a measure of the stiffness of the spring. If
the spring is designed to be deformed by changing its length, the spring
constant k is defined as the force required for a unit change in length.
Thus '

k===%==FL" (1.4-3)



