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The Fifth Conference and these Proceedings are dedicated to

Paul Erdos
and
Ronald L. Graham
and the editors herewith recognize and laud their outstanding

contributions to mathematics and their promotion of Graph Theory
around the world.



PREFACE

This Volume constitutes the Proceedings of the Fifth
Quadrennial International Conference on the Theory and Appli-
cations of Graphs with special emphasis on Algorithms and Computer
Science Applications, held at Western Michigan University in
Kalamazoo, Michigan, June 4-8, 1984. Conference participants in=-
cluded research mathematicians and computer scientists from
colleges, universities, and the industry, as well as graduate and
undergraduate students. Altogether 29 states and 15 countries were
represented. The contributions to this Volume include many topics
in current research in both the theory and applications in the
areas of graph theory and computer science.
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TILING FINITE FIGURES CONSISTING OF

REGULAR POLYGONS

Jin AKIYAMA
Tokai University

Mikio KANO
Akashi Technological College

Mari-Jo RUIZ
Ateneo de Manila University

ABSTRACT
We give some sufficient conditions for a finite plane figure
consisting of squares or hexagons to be covered with tiles of

specific shapes.

1. Introduction

Tiling problems examine the possibility of covering plane
figures with tiles of specific shapes, where covering a figure
with tiles means to lay tiles over the figure so that it is com-
pletely covered, but such that no tiles are stacked on each other
and no tiles exceed the edges of the figure. For example, the
problem of deciding whether the defective chessboard of Figure 1.1
(a) can be covered with dominoes (Figure 1.1 (b)) is a tiling
problem. In this paper, we shall present some results omn tiling
plane figures consisting of a finite number of squares or regular

hexagons.
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(a) A defective chessboard (b) A domino

Figure 1.1

Consider a plane figure consisting of some polygons. Two
polygons in the figure are said to be adjacent if they have a
common edge. For any figure, we can associate a graph as follows:
Represent each polygon in the figure by a vertex and join two
vertices by an edge if the polygons represented by these vertices
are adjacent. There is a close relationship between the solution
of a tiling problem and the existence of a certain component
factor (i.e. a spanning subgraph with a given component) in the
graph associated with the figure. For example, the graph associ-
ated with the defective chessboard of Figure 1.1 (a) is shown in
Figure 1.2 (a). Moreover, it is clear that the existence of
tiling a defective chessboard with dominoes is equivalent to the
existence of a 1-factor in the graph associated with the defec-
tive chessboard. Note that the graph given in Figure 1.2 (b) can-
not be the graph associated with any defective chessboard since

two vertices x and y are not joined by an edge.
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Xy
(a) (b)
Figure 1.2
We use the following notation. By P , C and K , Wwe
n n 1,n-1

denote the path, the cycle and the star with n vertices, respec-
tively. For a graph G and a set {A,B,---,K} of graphs, a
spanning subgraph F of G is called an {A,B,--:.K}-factor of

G if each component of F 1is isomorphic to one of {A,B,:--,K}.
In particular, each component of an H-factor (i.e. an {H}-
factor) is H.

We conclude this section by mentioning that some papers on
tiling problem are concerned with the infinite plane, the infinite
half plane and others, rather than finite planes. Golomb [7]
studied the problem of tiling the infinite plane, the half plane,
a quadrant of the plane, infinite strips, and other infinite
figures with polyominoes of one shape. He also gave a classifica-
tion of the capability of each polyomino, consisting of up to six
unit squares, tiling each of the figures mentioned above. The

papers [5], [6], [8] discuss various ways of tiling the plane.

2. Tiling defective chessboards

A figure obtained from an m x n chessboard (m rows and n
columns) by removing a certain number of unit squares is called a

defective chessboard, where m and n are arbitrary integers.

The order of a defective chessboard is the number of unit squares
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in it. A defective chessboard B is said to be tough if every
pair of adjacent dominoes in B is contained in a 2 x 2

square of B. Observe that the defective chessboard in Figure 2.1
(a) is tough, while the one in Figure 2.1 (b) is not. The graph
associated with a defective chessboard is called a square graph,
and a square graph is said to be tough if its associated defective
chessboard is tough, that is, a square graph is tough if every

edge is contained in some C

4"
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(a) A tough defective chessboard (b) A defective chessboard
that covered with triminoes. is not tough and cannot
be covered with tri-
ominoes.
Figure 2.1

We say that a defective chessboard is connected if the correspond-
ing square graph is connected. Generally, a plane figure is said
to be connected if the corresponding graph is connected.

Tutte's l-factor theorem |11] provides a solution to tiling a
defective chessboard with dominoes. Moreover, Edmonds [4] gives a
rolyominal time algorithm for determining the existence of tiling
a defective chessboard with dominoes. We now turn our attention
from dominoes to other tiles. There are two kinds of triominoes,

namely L-shaped and I-shaped triominoes (Figure 2.2 (a) and (b)).
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Theorem 2.1 (2] Every connected tough defective chessboard of

order 3p can be covered with triomiones (Figure 2.1 (a)).

We omit the proof of this theorem, which is similar to that
of Theorem 2.2, presented next. Note that both I-shaped and
L-shaped triomiones are represented by P3 in the corresponding
graph, and so the above theorem also gives a local sufficient
condition for a square graph to have a P3-factor.

There exists a connected tough square graph of order 4p
which has neither Pz-factors nor {PA' K1,3}-factors for any p 2
7 (Figure 2.3). However, we have the next theorem, which says

that every connected tough chessboard of even order can be tiled

with dominoes and tetrominoes given in Figure 2.2 (c).

-

P «
| 1 11T
(a) The L-shaped (b) The I-shaped
triomino triomino I I :L b ___U
L |

(¢c) The tetriomino
corresponding to K1 3

A tough square graph having
neither Pp-factors nor

{PA,K1,3}—factors

Figure 2.2 Figure 2.3

Theorem 2.2 Every connected tough square graph of even order has

a {Pz, Kl,a}-factor (Figure 2.4).



