

TP360.3 THEL
M6 '

By M. W. Memurran

TAB BOOKS

Blue Ridge Summit, Pa. 17214

@

FIRST EDITION

FIRST PRINTING—MARCH 1977

Copyright ©1977 by TAB BOOKS

Printed in the United States
of America

Reproduction or publication of the content in any manner, without
express permission of the publisher, is prohibited. No liability is assumed

with respect to the use of the information herein.

Library of Congress Cataloging in Publication Data

McMurran, Marshall
Programming Microprocessors

Bibliography: p.

Includes index.

1. Microprocessors-Programming. I. Title.
QAT76.6. M326 001.6'42 77-3736
ISBN 0-8306-7985-5
ISBN 0-8306-6985-X pbk.

ACKNOWLEDGMENTS

I wish to thank the engineers and management of Rockwell
International Electronics Operations, who provided valuable
source information, and in particular, colleagues from the
Microelectronic Device Division, who prepared the programs
from which some of the AMP examples were adapted. I wish
also to acknowledge the use of literature from Motorola and
Intel Corporations, which was taken as source data for the
discussions of the M6800, MP/L, and the 8080. And I thank
Shirley Pairish, Ihla Crowley, and Jane Hornback for their
invaluable aid in preparing the manuscript.

Contents

Introduction

Basic Microprocessor

Organization and Functions
Microprocessor Configuration

Number Systems

Binary Integers—Binary Arithmetic—Complementation—Bi-
nary Multiplication—Precision—Octal and Hexadecimal Sys-
tems—Number Conversions—Binary-Coded Decimal Num-
bers

Basic Microprocessor Logic

Introduction to Boolean Algebra—Veitch Diagrams—Binary
Adders

Fixed-Point Arithmetic

Conventions—Scaling Rules for Fixed-Point Arithmetic
Operations

Basic Microprocessor Programming

Flow Charts—Memory Addressing and Paging—Instruction
Set—Introduction to Assemblers

Programs and Subroutines
Initialization Routine (ST)}—Zero RAM Subroutine (ZORM)—

Word Shift Subroutine (WRS)—Bit Designation Subroutine-

(BDS)—Skip on Carry Zero Subroutine (SKCZy—Binary Left
Shift (BLS) Subroutine—Fixed-Point BCD Addition
Subroutine (FXAy—Fixed-Point BCD Subtraction Subroutine
(FXSy—Return Address Save Subroutine (PSHP)—Fixed-
Point Binary Addition Subroutine (FBAy—Fixed-Point Binary
Subtraction Subroutine (FBS)

13

52

76

107

10

11

12

13

Floating-Point Arithmetic

Conventions—Arithmetic—Floating-Point Addition and Sub-
traction—Floating-Point Multiplication

Programming Aids

Loaders—The Microprocessor as an Assembler Host—Di-
agnostics—The Simulator or Emulator—The Text-Editor—
Time-Shared Systems—The Assemulator

Data Exchange and Use of Peripherals
Data Format Standards—Parity Check—Check Sum—
Keyboard Interface—Display Drive—Auxiliary Storage Media

Compilers

Basic Compiler Configuration—FORTRAN—MPL Compiler
Language—PL/M Compiler Language

Microprocessor Configurations
Motorola M6800 Microprocessor—Intel 8080

Microprocessor—Rockwell PPS-8 Microprocessor—PPS-8
Central Processor

Special Programming Techniques

Non-Integral Power-of-Two Scaling—Push-Down/Pop-Up
Stacks—Interrupt Handling—Direct Memory Access—
Pooled Data—Non-Binary Counters

Characteristics and

Fabrication of Microprocessors

PMOS and NMOS Devices—Complementary MOS (CMOS)—
Integrated Injection Logic (12L)

125

136

148

163

181

217

229

Bibliography

Appendices

A Single-Digit Hexadecimal (Hex) Multiplication Table
B A Proof of the Hartmann Conversion System

C Powers and Conversions

D Minimum Binary Scales

E AMP Instruction Set

F RAMWork Sheet

Index

243

247

248

250

264

266

272

275

Introduction

It is the intent of this book to impart a basic understanding of
microprocessor configurations.and functions, and to describe
the requirements and techniques of microprocessor pro-
gramming in sufficient detail that any user may, in
conjunction with the literature for a specific microprocessor,
define a useful system and prepare working programs with
little difficulty.

Emphasis has been placed here on describing the in-
teraction of the hardware and software systems, the fun-
damentals of processor arithmetic, and numerical conver-
sions both to and from readable decimal numbers and their
equivalent machine representations. Also discussed in some
detail are scaling techniques for magnitude control of
fixed-point processor data, the basics of floating-point
arithmetic, and the efficient use of instruction and data
storage. Such important elements are often under-emphasized
today by programmers and programming instructors who
have come to depend upon powerful compilers using
near-English or near-algebraic programming languages. But
many would-be programmers do not have unlimited access to
a large-scale computer system with almost unlimited
memory. Though such compilers can and often do play an
important role in later stages of microprocessor programming
and system design, it is the purpose of this book to bridge the
gap between the elementary microprocessor programming

9

techniques and the more sophisticated techniques that are
becoming available. A good understanding of a micro-
processor’s features and limitations, as well as established
programming techniques, will make it much easier to write
simple programs and to make best use of advanced
computer-oriented programming systems.

The evolution of microprocessors and programming
techniques goes back over many years, and it might prove
helpful to gain a brief overview to place things in the proper
perspective. Digital computational hardware has been in use
since the days of the clever Chinese mathematicians who used
simple beads as memory devices, although in fact all
arithmetic operations were done in the head of the operator.
Actually, the first successful attempt to mechanize arithmetic
processes was made by Charles Babbage, who, in 1830,
designed and built a *‘calculating engine’’ to compute artillery
tables. This *‘engine” consisted of sets of gears and counters
that approximated the generation of table entries by use of
finite differences. The earliest electronic digital computer, the
ENIAC, was developed in 1945 by Eckert and Mauckley at the
Moore School of Engineering. This machine consisted of an
arithmetic center and a memory that stored information in
flip-flop bistable registers for rapid retrieval and use by the
arithmetic and control portion. This was not a stored-program
machine, however. The first truly general-purpose machine,
called the EDSAC, was built by a group headed by M. V.
Wilkes at Cambridge University in England. The Wilkes team
was the first to use assemblers and subroutine libraries, as
well as making other contributions to programming
techniques and procedures.

The development of other digital computers came rapidly
and can be thought of as occurring in four “‘rounds.”” The first
round included the development of large and very expensive
scientific and business computer systems such as the IBM 700
series, Univac 1103, etc. The second round included medium-
or small-scale machines that were intended for use by
scientific and engineering organizations; these sold in the
price range of $50,000 to $100,000. The third round resulted
from engineering efforts directed toward increasing inherent
reliability, reducing size, and providing “building blocks’” or
modules that could be purchased separately and combined to
form a single system.

10

Coincident with the latter part of the first round was the
development of compilation programs to ease the pro-
gramming burden. And by the mid 1960s, the old 256-word
cathode-ray-tube memory in the Bureau of Standards’
Western Automatic Computer (SWAC), an impressive
machine built in the early 1950s. gave way to a 128,000-word
high-speed core memory.

The fourth round was driven by the ability of industry to
provide small, reliable, and inexpensive semiconductor
devices, each containing thousands of transistors and diodes
(so-called large scale integration, or LSI). This then paved the
way for the powerful but small minicomputers.

The microprocessor (or microcomputer) is a very recent
configuration based on the organization of the minicomputer,
but using only LSI for memory and logic electronics. A
minimally configured microprocessor system consists of a
power source, a central processing unit, two memories and an
input/output mechanism with interfacing electronics. Either
the central processor or a memory device with well over 1000
storage elements can be contained on one silicon chip
approximately 0.2 inch square.

The technology permitting this high circuit density was
initially spurred on by the requirements of military and space
programs during the 1960s, and has grown phenomenally in the
last five years. With the broadening production base,
primarily in the United States and the Far East, the unit cost
of a useful set of microcomputer devices had dropped from
around $1500 in 1972 to approximately $150 for equivalent
computational capability by late 1975. Even more recently,
several central processor units have dropped in price from $60
to $20 each for small quantities. The result of this kind of price
erosion is that the computational power derived from a
roomful of hardware in the 1950s is now available to a user on a
few silicon chips for about $100, with several complete
single-chip microprocessor systems already beginning to
reach the marketplace.

The result of this relatively inexpensive computational
tool is a tremendously expanding interest in designing and
programming microprocessor systems for an unbelievably
wide variety of applications. And, of course, experimenters
and hobbyists have quickly welcomed the microprocessor as
yet another sophisticated toy evolving from our technological

11

society. But whether a mere curiosity or an important
component in an industrial system, the microprocessor has
found solid footing in today’s world, and both the
serious-minded experimenter and the modern engineer need to
know the essential architectural characteristics and pro-
gramming techniques of these microprocessors in order to
achieve the computational functions they desire.

M. W. McMurran

12

Chapter 1
Basic Microprocessor

Organization and
Functions

The systems described here are called microcomputers about
as often as they are called microprocessors. Traditionally, the
term microprocessor was reserved to describe the central
processing unit (CPU), which contains various registers used
to store and manipulate numbers and instructions, thereby
performing arithmetic and logic operations. Present usage,
however, tends toward calling an entire assembly of devices a
microprocessor since the CPU cannot by itself do useful work.
Thus the CPU is considered just a part of a larger mi-
croprocessor system.

Microprocessors are assembled from a wide variety of
integrated circuit (IC) building blocks and so can assume an
even wider variety of useful configurations. This variety,
however, does not lend itself to an introductory discussion of
microprocessors, so it is desirable to first select a rep-
resentative system as the basis of discussion. Variations of
this basic system, as they occur in real systems, will then be
treated as modifications of the central theme.

The basic system we will use is based on the Rockwell
PPS-4 system. We will call this configuration AMP—standing
for A Micro-Processor. The AMP system illustrated in Fig. 1-1
is made up of a central processor unit (CPU) that is a
large-scale integration (LSI) device performing the arith-
metic and logic functions, a metal-oxide semiconductor (MOS)

13

Al

CLOCK CENTRAL PROCESSOR
UNIT(CPU)
B !
POVERTT 171 manpomaccess [
MEMORY (RAM) [
w
Z
5
84
7
™t READ-ONLY =<
MEMORY (ROM) w
KEYBOARD J
B .
INPUT/OUTPUT
CONTROLLER (I0C)

ADDRESS BUS
(12 LINES)

INSTRUCTION/DATA
BUS (8 LINES)

Fig. 1-1. AMP organization and data flow.

read-only memory (ROM) used for permanently storing
programs and data, a MOS random-access memory (RAM)
used as a “scratchpad” memory for temporarily storing
modified instructions and results from calculations, and an
input/output controller (IOC) used to direct and format data
traveling between the CPU and the outside world.

The processor also needs an appropriate power supply, so
the AMP will use +5 and —12 DC supplies. A crystal-controlled
clock provides the basic timing source and completes the
electrical components. The basic clock rate is 200 kHz and is
separated into four phases for control of the internal MOS
logic. For input/output the AMP uses a keyboard and a simple
pointer.

Data flow in this system is via two information channels,
or buses. This configuration requires individual devices to be
smart enough to talk only during proper time slots. Since the

14

clock signals are common to all devices, system syn-
chronization is relatively easy to achieve. We will consider all
devices to be PMOS (P-channel MOS), though other options
would be NMOS, CMOS, or I’L.. A description of these various
technologies is given in Chapter 13.

The microprocessor obeys a set of operating rules similar
to those of any stored-program digital computer. Processor
functions are determined by the CPU under control of a set of
instruction patterns, most of which are permanently stored in
the ROM. These patterns are decoded by the CPU, resulting in
the execution of an operation belonging to one of the following
instruction classes or groups, which include some examples of
the instruction types and characteristics of each group.

Arithmetic and Logic Instructions. Examples: Add two
binary numbers. Logically combine two binary numbers (see
Chapter 3).

Data Transfer Instructions. Examples: Load data from
memory into an internal CPU register. Store data from an
internal CPU register into memory. Exchange data between
two registers. Load data from instruction memory (ROM) into
aCPU register. (These instructions are termed immediates.)

Control Transfer Instructions. Examples: Take next
instruction out of normal sequence if content of selected
register is less than zero. Skip one instruction if a particular
bit equals one.

Input/Output Instructions. These instructions are strongly
dependent upon the type of processor used. Examples: Load n
bits (binary digits) from an external device into a CPU
register, or directly into memory. Read single-bit input lines
and transfer the data into a CPU register. Transfer n bits of
output data with the appropriate timing control to an external
device.

The various permitted or recognized instructions that a
microprocessor will accept is referred to as the instruction set.
The PPS instruction set, which is the basis for the AMP
instructions, is quite flexible and often complex. For example,
the execution of some of these instructions will cause as many
as four independent operations to be performed simul-
taneously.

To reduce the work of decoding the bit patterns that
represent these instructions, the CPU will normally first
determine the class, and then the specific instruction type

15

within the class. As a result, the bit patterns defining
instructions within classes generally have something in
common. In addition to the instruction groups introduced here,
microprocessors more sophisticated than the AMP have
instructions that further extend the processor’s capability.
Notable are:

Shift Instructions. Most microprocessors have the
capability of shifting the binary contents of a register, usually
the accumulator, either right a fixed number of spaces or left a
fixed or variable number of spaces to provide for the
arithmetic operations discussed in Chapters 5 and 6. The
simple instruction list chosen for the AMP contains only a
right shift command, and this makes programming the AMP a
bit more involved than programming some other processors.

Stacking Instructions. A stack is a series of registers
connected together so that data enters and leaves through only
the first, or top, register. Stacks are generally used for storing
reference addresses, usually the next address of an instruction
occuring before the microprocessor was interrupted for some
reason. Stacking instructions are usually of two types: push
instructions store a new address on the top of the stack,
pushing any other addresses deeper into the stack registers,
while pop instructions raise the addresses in the stack
registers to expose the next in order at the top. This procedure
permits the orderly storing and removal of address data, and
it is discussed further in Chapters 11 and 12.

Multiplication and Division. These functions are now being
built into microprocessor hardware as new processors are
introduced, thus significantly adding to the effective speed of
these machines. Multiplication and division operations are
performed by automatically creating strings of instructions
(subroutines). Each time the function is needed, control is
transferred to these subroutines. Multiplication is then
mechanized by a controlled set of successive additions, and
division by a controlled set of subtractions. This permits 20 to
100 instructions to be automatically executed for each multiply
or divide instruction, depending upon the precision needed and
the idiosyncrasies of the processor used. The resulting
trade-off penalty in the excecution time of this method when
compared with a separate hardware mechanization is often
quite severe, but of course the approach is simpler and
cheaper.

16

