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Preface

I once attended a conference at which George Box stated that “Statistics is
much too important to be left entirely to statisticians.” A bit later, Walt
Federer stated that “Science is much too important to be left entirely to
scientists.” Both of these famous statisticians were correct! Never before in
the history of science and statistics has there been a greater need for interac-
tions and collaborations between scientists and statisticians. This book helps
to facilitate such collaborations and interactions. I have been fortunate in that
I have had substantial contact with scientists during my tenure at Kansas
State University. These collaborations have greatly influenced my approach
to teaching multivariate methods. I believe that multivariate methods are too
important to be taught only to statisticians.

Furthermore, I have been teaching public seminars and college courses in
applied multivariate analyses for the last 20 years. In these seminars and
courses, students have posed many important questions that multivariate
methods can help answer. As data sets grow in size, multivariate methods
become ever more useful. Today’s technologies make it very easy to collect
large amounts of data; multivariate methods are needed to determine whether
such massive amounts of data actually contain information. It has been said
that while it is easy to collect data, it is much harder to collect information.
Multivariate methods can help determine whether there is information in
data, and they can also help to summarize that information when it exists.

To date, textbooks have emphasized only the theory of multivariate meth-
ods or only the application of the methods. Readers were given information
that was either too advanced to apply or too elementary to illustrate the power
of the methods. This text has broken the mold by focusing on the why, when,
how, and what of multivariate analyses and answering the following questions:

Why should multivariate methods be used?

When should they be used?

How can they be used?

And what has been learned by the application of the methods?

Ideally, users of this book will have had a previous course in statistics that

included multiple regression. Some familiarity with matrix algebra is desirable,
but not crucial. My approach assumes familiarity with most of the statistical
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concepts encountered in a first course in statistics, such as means and standai
deviations, correlations, p-values, hypothesis tests, and confidence limits.

While this text is loaded with examples using real data, several of tt
exercises are directed at data sets that students are asked to provide fro
their own experiences. I find that students enjoy working with their own dat
So, when I teach multivariate methods, I require each student to provide
data set for class use along with a description of the data’s important featur
and the reasons behind its being collected. These data sets are then place
in a computer directory that every student in the class can access. [ then u
these data sets as much as possible when assigning exercises to the class.
strongly encourage instructors who use this book to do the same.

Other unique features of this text include:

B annotated computer output, emphasizing SAS and SPSS
B extensive use of graphics to explain concepts

® data disk that contains data files from text discussion and exercise
as well as computer commands used to create the analyses describe
throughout the text

I owe much of the development of this text to those who have participate
in my seminars and courses. From these ‘‘students,” I learned about the
needs, their concerns, and their abilities. In writing this text, I have tried

address their needs and concerns, while recognizing their differing abilitie:
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Applied Multivariate Methods

Multivariate data occur in all branches of science. Almost all data collected by today's researchers
can be classified as multivariate data. For example, a marketing researcher might be interested in
identifying characteristics of individuals that would enable the researcher to determine whether a
certain individual is likely to purchase a specific product. Furthermore, a wheat breeder might be in-
terested in more than just the yields of some new varieties of wheat. The wheat breeder may also
be interested in these varieties' resistance to insect damage and drought. Finally, a social scientist
might be interested in studying the relationships between teenage girls” dating behaviors and their
fathers’ attitudes. Each of these endeavors involves multivariate data.

To begin a discussion of multivariate data analysis methods, the concept of an experimental
unit must be defined. An experimental unit is any object or item that can be measured or evalu-
ated in some way. Measuring and evaluating experimental units is a principal activity of most re-
searchers. Examples of experimental units include people, animals, insects, fields, plots of land,
companies, trees, wheat kernels, and countries. Multivariate data result whenever a researcher
measures or evaluates more than one attribute or characteristic of each experimental unit. These
attributes or characteristics are usually called variables by statisticians.

The next section gives an overview of some multivariate methods that are discussed in
this text.

1]
An Overview of Multivariate Methods

Multivariate methods are extremely useful for helping researchers make sense
of large, complicated, and complex data sets that consist of a lot of variables
measured on large numbers of experimental units. The importance and use-
fulness of multivariate methods increase as the number of variables being
measured and the number of experimental units being evaluated increase.

Often, the primary objective of multivariate analyses is to summarize large
amounts of data by means of relatively few parameters. The underlying theme
behind many multivariate techniques is simplification.

Multivariate analyses are often concerned with finding relationships among
(1) the response variables, (2) the experimental units, and (3) both response
variables and experimental units. One might say that relationships exist among
the response variables when several of the variables really are measuring a
common entity. For example, suppose one gives tests to third-graders in
reading, spelling, arithmetic, and science. Individual students may tend to get
high scores, medium scores, or low scores in all four areas. If this did happen,
then these tests would be related to one another. In such a case, the common
thing that these tests may be measuring might be “overall intelligence.”

Relationships might exist between the experimental units if some of them
are similar to each other. For example, suppose breakfast cereals are evaluated
for their nutritional content. One might measure the grams of fat, protein,
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carbohydrates, and sodium in each cereal. Cereals would be related to eact
other if they tended to be similar with respect to the amounts of fat, protein
carbohydrates, and sodium that are in a single serving of each cereal. On
might expect sweetened cereals to be related to each other and high-fibe:
cereals to be related to each other. One might also expect sweetened cereal
to be much different than high-fiber cereals.

Many multivariate techniques tend to be exploratory in nature rather thai
confirmatory. That is, many multivariate methods tend to motivate hypothese
rather than test them. Consider a situation in which a researcher may hawv
50 variables measured on more than 2000 experimental units. Traditiona
statistical methods usually require that a researcher state some hypotheses
collect some data, and then use these data to either substantiate or repudiat:
the hypotheses. An alternative situation that often exists is a case in which .
researcher has a large amount of data available and wonders whether ther
might be valuable information in these data. Multivariate techniques are ofte:
useful for exploring data in an attempt to learn if there is worthwhile an
valuable information contained in these data.

Variable- and Individual-Directed Techniques

One fundamental distinction between multivariate methods is that some ar
classified as “‘variable-directed’’ techniques, while others are classified as “‘indi
vidual-directed” techniques.

Variable-directed techniques are those that are primarily concerned wit
relationships that might exist among the response variables being measurec
Some examples of this type of technique are analyses performed on correlatio
matrices, principal components analysis, factor analysis, regression analysi:
and canonical correlation analysis.

Individual-directed techniques are those that are primarily concerned wit
relationships that might exist among the experimental units and/or individual
being measured. Some examples of this type of technique are discriminar
analysis, cluster analysis, and multivariate analysis of variance (MANOVA

Creating New Variables

We quite often find it useful to create new variables for each experiment:
unit so they can be compared to each other more easily. Many multivariat
methods help researchers create new variables that have desirable propertie

Some of the multivariate techniques that create new variables are princip:
components analysis, factor analysis, canonical correlation analysis, canonic:
discriminant analysis, and canonical variates analysis.

Some brief overviews of the multivariate techniques that are considere
in this book are given next.



