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Preface

Bernstein functions and the important subclass of complete Bernstein functions ap-
pear in various fields of mathematics—often with different definitions and under dif-
ferent names. Probabilists, for example, know Bernstein functions as Laplace expo-
nents, and in harmonic analysis they are called negative definite functions. Complete
Bernstein functions are used in complex analysis under the name Pick or Nevanlinna
functions, while in matrix analysis and operator theory, the name operator monotone
function is more common. When studying the positivity of solutions of Volterra in-
tegral equations, various types of kernels appear which are related to Bernstein func-
tions. There exists a considerable amount of literature on each of these classes, but
only a handful of texts observe the connections between them or use methods from
several mathematical disciplines.

This book is about these connections. Although many readers may not be familiar
with the name Bernstein function, and even fewer will have heard of complete Bern-
stein functions, we are certain that most have come across these families in their own
research. Most likely only certain aspects of these classes of functions were important
for the problems at hand and they could be solved on an ad hoc basis. This explains
quite a few of the rediscoveries in the field, but also that many results and examples
are scattered throughout the literature; the exceedingly rich structure connecting this
material got lost in the process. Our motivation for writing this book was to point
out many of these connections and to present the material in a unified way. We hope
that our presentation is accessible to researchers and graduate students with different
backgrounds. The results as such are mostly known, but our approach and some of the
proofs are new: we emphasize the structural analogies between the function classes
which we believe is a very good way to approach the topic. Since it is always im-
portant to know explicit examples, we took great care to collect many of them in the
tables which form the last part of the book.

Completely monotone functions—these are the Laplace transforms of measures on
the half-line [0, co)—and Bernstein functions are intimately connected. The deriva-
tive of a Bernstein function is completely monotone; on the other hand, the primi-
tive of a completely monotone function is a Bernstein function if it is positive. This
observation leads to an integral representation for Bernstein functions: the Lévy—
Khintchine formula on the half-line

f(A)=a+bA+/ (l—e—'“)u(dt)‘ A>0.
(0,00)

Although this is familiar territory to a probabilist, this way of deriving the Lévy—
Khintchine formula is not the usual one in probability theory. There are many more
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connections between Bernstein and completely monotone functions. For example,
f is a Bernstein function if, and only if, for all completely monotone functions g
the composition g o f is completely monotone. Since g is a Laplace transform, it is
enough to check this for the kernel of the Laplace transform, i.e. the basic completely
monotone functions g(A) = et 1> 0.

A similar connection exists between the Laplace transforms of completely mono-
tone functions, that is, double Laplace or Stieltjes transforms, and complete Bernstein
functions. A function f is a complete Bernstein function if, and only if, for each
¢t > 0 the composition (f + f(1))~" of the Stieltjes kernel (z + A)~! with f is a
Stieltjes function. Note that (+ + A)~! is the Laplace transform of e~ % and thus the
functions (t + A)~!, t > 0, are the basic Stieltjes functions. With some effort one can
check that complete Bernstein functions are exactly those Bernstein functions where
the measure y in the Lévy—Khintchine formula has a completely monotone density
with respect to Lebesgue measure. From there it is possible to get a surprising geo-
metric characterization of these functions: they are non-negative on (0, co), have an
analytic extension to the cut complex plane C\ (—oo, 0] and preserve upper and lower
half-planes. A familiar sight for a classical complex analyst: these are the Nevanlinna
functions. One could go on with such connections, delving into continued fractions,
continue into interpolation theory and from there to operator monotone functions . ..

Let us become a bit more concrete and illustrate our approach with an example. The
fractional powers A — A%, A > 0,0 < « < |, are easily among the most prominent
(complete) Bernstein functions. Recall that

g a * ALy —a—1
fa(A) = A ——F(]—a)/o (1—e")t dt. (1)

Depending on your mathematical background, there are many different ways to derive
and to interpret (1), but we will follow probabilists’ custom and call (1) the Lévy—
Khintchine representation of the Bernstein function f,. At this point we do not want
to go into details, instead we insist that one should read this formula as an integral
representation of f with the kernel (1 — e~ and the measure ¢ 17! d1.

This brings us to negative powers, and there is another classical representation

l o0
AP = —/ —At B-1 gy 0, 2
e b ¢ P> @

showing that A — A Pisa completely monotone function. It is no accident that the
reciprocal of the Bernstein function A%, 0 < « < 1, is completely monotone, nor
is it an accident that the representing measure ¢y t %! dt of A% has a completely
monotone density. Inserting the representation (2) for t~@!into (1) and working out
the double integral and the constant, leads to the second important formula for the
fractional powers,

B I /°° A
S T@r(—a) Jo A+t

o

2=l s (3)



Preface ix

We will call this representation of A* the Stieltjes representation. To explain why this
is indeed an appropriate name, let us go back to (2) and observe that t*~!is a Laplace
transform. This shows that A%, « > 0, is a double Laplace or Stieltjes transform.
Another non-random coincidence is that

Ja(A) 1 ©
A T@rl—-a) Sy A+t

1% dt

is a Stieltjes transform and so is A™* = 1/f,(A). This we can see if we replace &=
by its integral representation (2) and use Fubini’s theorem:

I —a

1 S |
foz()t)z)L =F(Ol)F(l—a)/(; A+t

It is also easy to see that the fractional powers A — A% = exp(alogA) extend
analytically to the cut complex plane C \ (—o0,0]. Moreover, z* maps the upper
half-plane into itself; actually it contracts all arguments by the factor «. Apart from
some technical complications this allows to surround the singularities of f,—which
are all in (—oo, 0)—by an integration contour and to use Cauchy’s theorem for the
half-plane to bring us back to the representation (3).

Coming back to the fractional powers A%, 0 < a < 1, we derive yet another
representation formula. First note that A = fOA as~ (7% ds and that the integrand
5700 s a Stieltjes function which can be expressed as in (4). Fubini’s theorem and

the elementary equality
A
1 A
/ ds = log (l + —)
o I + s t

1% dt. 4)

yield

o __ o oo & a—1
A% = F@r(—a) /(; log(l + t) t dt. (5)

This representation will be called the Thorin representation of A*. Not every complete
Bernstein function has a Thorin representation. The critical step in deriving (5) was
the fact that the derivative of A% is a Stieltjes function.

What has been explained for fractional powers can be extended in various direc-
tions. On the level of functions, the structure of (1) is characteristic for the class BF
of Bernstein functions, (3) for the class CBJ of complete Bernstein functions, and (5)
for the Thorin—Bernstein functions TBJ. If we consider exp(—tf) with f from BJF,
CBJ or TBT, we are led to the corresponding families of completely monotone func-
tions and measures. Apart from some minor conditions, these are the infinitely divisi-
ble distributions ID, the Bondesson class of measures BO and the generalized Gamma
convolutions GGC. The diagrams in Remark 9.17 illustrate these connections. If we
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replace (formally) A by —A, where A is a negative semi-definite matrix or a dissipa-
tive closed operator, then we get from (1) and (2) the classical formulae for fractional
powers, while (3) turns into Balakrishnan’s formula. Considering BF and CBF we
obtain a fully-fledged functional calculus for generators and potential operators. Since
complete Bernstein functions are operator monotone functions we can even recover
the famous Heinz—Kato inequality.

Let us briefly describe the content and the structure of the book. It consists of three
parts. The first part, Chapters 1-10, introduces the basic classes of functions: the
positive definite functions comprising the completely monotone, Stieltjes and Hirsch
functions, and the negative definite functions which consist of the Bernstein functions
and their subfamilies—special, complete and Thorin—Bernstein functions. Two prob-
abilistic intermezzi explore the connection between Bernstein functions and certain
classes of probability measures. Roughly speaking, for every Bernstein function f the
functions exp(—tf), t > 0, are completely monotone, which implies that exp(—¢f) is
the Laplace transform of an infinitely divisible sub-probability measure. This part of
the book is essentially self-contained and should be accessible to non-specialists and
graduate students.

In the second part of the book, Chapter 11 through Chapter 14, we turn to appli-
cations of Bernstein and complete Bernstein functions. The choice of topics reflects
our own interests and is by no means complets. Notable omissions are applications in
integral equations and continued fractions.

Among the topics are the spectral theorem for self-adjoint operators in a Hilbert
space and a characterization of all functions which preserve the order (in quadratic
form sense) of dissipative operators. Bochner’s subordination plays a fundamental
role in Chapter 12 where also a functional czlculus for subordinate generators is de-
veloped. This calculus generalizes many formulae for fractional powers of closed
operators. As another application of Bernste:n and complete Bernstein functions we
establish estimates for the eigenvalues of subordinate Markov processes. This is con-
tinued in Chapter 13 which contains a detailed study of excessive functions of killed
and subordinate killed Brownian motion. Finally, Chapter 14 is devoted to two results
in the theory of generalized diffusions, both related to complete Bernstein functions
through Krein’s theory of strings. Many of these results appear for the first time in a
monograph.

The third part of the book is formed by extensive tables of complete Bernstein
functions. The main criteria for inclusion in the tables were the availability of explicit
representations and the appearance in mathernatical literature.

In the appendix we collect, for the readers’ convenience, some supplementary re-
sults.

We started working on this monograph in summer 2006, during a one-month work-
shop organized by one of us at the University of Marburg. Over the years we were
supported by our universities: Institut fiir Stochastik, Technische Universitit Dresden,
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Department of Mathematics, University of Illinois, and Department of Mathematics,
University of Zagreb. We thank our colleagues for a stimulating working environ-
ment and for many helpful discussions. Considerable progress was made during the
two week Research in Pairs programme at the Mathematisches Forschungsinstitut in
Oberwolfach where we could enjoy the research atmosphere and the wonderful li-
brary. Our sincere thanks go to the institute and its always helpful staff.

Panki Kim and Hrvoje Siki¢ read substantial parts of the manuscript. We are grate-
ful for their comments which helped to improve the text. We thank the series editor
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Chapter 1

Laplace transforms and completely monotone
functions

In this chapter we collect some preliminary material which we need later on in order
to study Bernstein functions.

As usual, we define the (one-sided) Laplace transform of a function m : [0, 00) —
[0, 00) or a measure u on the half-line [0, 00) by

L(m; L) :2/ e‘“m(t)dt or ZL(u:h) :=/ e"“u(dt), (1.1)
0 0

[0,00)

respectively, whenever these integrals converge. Obviously, Zm = £y if m(dt)
denotes the measure m(t) dt.

The following real-analysis lemma is helpful in order to show that finite measures
are uniquely determined in terms of their Laplace transforms.

Lemma 1.1. We have forallt,x = 0

lim e (o)t

A k!
ree k<Ax

= Tjo,x(1). (1.2)

Proof. Let us rewrite (1.2) in probabilistic terms: if X is a Poisson random variable
with parameter Az, (1.2) states that

lim P(X < Ax) = Ljgq(1).

A—00

From the basic formulae for the mean value and the variance of Poisson random vari-
ables, EX = At and VarX = E((X—A1)?) = At, we find for > x with Chebyshev’s
inequality

P(X < Ax) S P(|X — At] = A(r — x))
- E((X — A1)?)
A2(t — x)?
_ At A—00
A2t — x)?

0.



2 1 Completely monotone functions

If t+ < x, a similar calculation yields
P(X <Ax) =1-P(X — At > A(x —1))
S 1—P(X —At] > Ax — 1) 222 1 -0,
and the claim follows. O

Proposition 1.2. A measure y supported in [0, 00) is finite if, and only if, £ (u;0+) <
00. The measure i is uniquely determined by its Laplace transform.

Proof. The first part of the assertion follows from monotone convergence since we

have u[0, 00) = f[o o0y 1 dp = limy 59 f[o 00) € At u(dt).
For the uniqueness part we use first the differentiation lemma for parameter depen-
dent integrals to get

(=1 2® (1) = [ M (% u(dn).
[0,00)

Therefore,

k
Z (—l)kg(k)(u;x));{ Z /0 | (At) ()

k<Ax ’ k<Ax
()u)’c

p(dr)

[0.00) ' <ax

and we conclude with Lemma 1.1 and dominated convergence that
im 3 R EW i) f Lo p(d) = pl0.x]. (13)
Ao [0,00)
This shows that i can be recovered from (all derivatives of) its Laplace transform. [l

It is possible to characterize the range of Laplace transforms. For this we need the
notion of complete monotonicity.

Definition 1.3. A function f : (0,00) — R is a completely monotone function if f
is of class C*° and

(=1)"fF@Q)=0 forall n€INU{0} and A > 0. (1.4)

The family of all completely monotone functions will be denoted by CM.
The conditions (1.4) are often referred to as Bernstein—-Hausdorff-Widder condi-
tions. The next theorem is known as Bernstein’s theorem.



1 Completely monotone functions 3

The version given below appeared for the first time in [34] and independently
in [287]. Subsequent proofs were given in [98] and [86]. The theorem may be also
considered as an example of the general integral representation of points in a convex
cone by means of its extremal elements. See Theorem 4.8 and [69] for an elementary
exposition. The following short and elegant proof is taken from [212].

Theorem 1.4 (Bernstein). Let f : (0,00) — R be a completely monotone function.
Then it is the Laplace transform of a unique measure p on [0, 00), i.e. for all A > 0,

F) = L(uid) = /[0 e,

Conversely, whenever £ (u;A) < oo for every A > 0, A > 2L (u; A) is a completely
monotone function.

Proof. Assume first that f(0+) = 1 and f(+o00) = 0. Let A > 0. For any a > 0
and any n € N, we see by Taylor’s formula

(k) A r(n)
f) = Zf @ —a + (’;_(,s)). (A=) ds

(s—2)""ds. (1.5

"'_k(k) _1n £@)
3 l)f @ (s +[ (-1) f])'m

k=0
If @ > A, then by the assumption all terms are non-negative. Let a — 0o. Then
D" f06s) - © =DM )
— )l ds = A A SO A P AN T
a_wo/ EE (s ) s /A P (s—=A)"""ds
< f(Q).

This implies that the sum in (1.5) converges for every n € IN as a — oo. Thus, every
term converges as a — 0o to a non-negative limit. Forn > 0 let

_1)yr £(n)
pn(A) = lim (l)n#(a—,\)”.

a—oQo

This limit does not depend on A > 0. Indeed, for ¥ > 0,

_1ym £
pnic) = lim —1) S (a)( —&)*

. —1)"f""(a) (a—k)"
= lim —2 (g — "_
a—l+oo (a—4) (a—A)n
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Letc, = ZZ;IO ok (A). Then

® (—1)* f(I(s)

D! (s —A)" 'ds.

) =ant |
A
Clearly, f(A) = ¢, forall A > 0. Let A — oo. Since f(4o00) = 0, it follows that
cn = 0 for every n € IN. Thus we have obtained the following integral representation
of the function f:

oo (_1\n £(n)
f(A):/ EVTE) (o ayrtas, (1.6)
A (n—1!
By the monotone convergence theorem
— i _ [T DD
—,{inof(k)_fo n—D! s"ds. (1.7)
Let
= EDY ()
fale) === (2) () (1.8)

Using (1.7) and changing variables according to s/¢, it follows that for every n € N,
fn is a probability density function on (0, o0). Moreover, the representation (1.6) can

be rewritten as
oo n—1 . 1\n £(n)
J) =/ (1—&) EN'7s) s"1ds
0 S )4 (n = l)'

0o n—1
=/ (1 _ﬁ) fultydt. (19)
0 nj4

By Helly’s selection theorem, Corollary A.8, there exist a subsequence (1 )r>; and
a probability measure p on (0, 00) such that fy, (t) dt converges weakly to u(dt).

Further, for every A > 0,
A.[ n—I1
lim (l - —) =M
n—o0 nj.

uniformly in ¢ € (0, 0o). By taking the limit in (1.9) along the subsequence (ng)g>1,
it follows that

/1A>:=jf =M p(dr),
(0,00)

Uniqueness of u follows from Proposition 1.2.
Assume now that f(0+) < oo and f(400) = 0. By looking at f/f(0+) we see
that the representing measure for f is uniquely given by f(0+)u.



1 Completely monotone functions 5

Now let f be an arbitrary completely monotone function with f(4o00) = 0.
For every a > 0, define fz(A) := f(A + a), A > 0. Then f; is a completely
monotone function with f;(0+) = f(a) < oo and f4(+00) = 0. By what has
been already proved, there exists a unique finite measure j, on (0, 00) such that
fa(X) = f(o,oo) e~ 11,(dt). It follows easily that for b > 0 we have e%’ ju,(dt) =
e 1 (dt). This shows that we can consistently define the measure w on (0, c0) by
w(dt) = e* ug(dt), a > 0. In particular, the representing measure p is uniquely
determined by f. Now, for A > 0,

1) = fip(r/2) = [ AP Y o (di)

(0,00)

:__/ e—lte(l/?_)l Hl/2(dt) :/ e—lt u(dr).
(0,00) (0,00)

Finally, if f(+00) = ¢ > 0, add ¢§p to p.
For the converse we set f(1) := £ (u:A). Fix A > 0 and pick € € (0,A). Since
t" = e "(et)" < nle e forallt > 0, we find

n!

'
/ " e M pu(de) < —n/ e~ A= | (dt) = n—r;ff(u:l —€)
[0,00) € J[0,00) €

and this shows that we may use the differentiation lemma for parameter dependent
integrals to get

n

)P0 = (=1) /

—At _ —A
i T wu(dt) _/ t"e M u(dt)y=0. O

[0,00)

Remark 1.5. The last formula in the proof of Theorem 1.4 shows, in particular, that
™) #0foralln > 1andall A > 0unless f € CM is identically constant.

Corollary 1.6. The set CM of completely monotone functions is a convex cone, i.e.
sfi+tfr e CM forall s,t 20 and f;, f» € CM,
which is closed under multiplication, i.e.
A fi(Q) f2(A) isin CM forall fi, f» € CM,

and under pointwise convergence:

CM = {ZLu : w is a finite measure on [0, 00)}

(the closure is taken with respect to pointwise convergence).
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Proof. That CM is a convex cone follows immediately from the definition of a com-
pletely monotone function or, alternatively, from the representation formula in Theo-
rem 1.4.

If 41; denotes the representing measure of f;, j = 1,2, the convolution

w0, u] == p1 * [0, u] := // Lio,u)(s + 1) pi(ds)pua(dt)
[0,00)x[0,00)
is the representing measure of the product f; f>. Indeed,
/ e p(du) = / / e 1y (ds)pad) = i) L),
[0,00) [0,00) J[0,00)

Write M = {Zu : uisafinite measure on [0, 00)}. Theorem 1.4 shows that
M C CM C M. We are done if we can show that CM is closed under pointwise
convergence. For this choose a sequence ( f,)new € CM such that lim, o0 fr(A) =
f(A) exists for every A > 0. If u, denotes the representing measure of f,, we find
foreverya > 0

pnl0.a] < f e unldr) < € fu(A) = e** (1)
[0,a]

which means that the family of measures (i, )nen 1s bounded in the vague topo-

logy, hence vaguely sequentially compact, see Appendix A.l. Thus, there exist a

subsequence (in, )ken and some measure p such that p,, — p vaguely. For y €

Cc[0, 00) with 0 < y < 1, we find

[ xwe i = im [ @€ an @) < i i, (0 = 1.
[0,00) —>00

k—o00 [0,00)

Taking the supremum over all such y, we can use monotone convergence to get

f e u(d) < ().
[0,00)
On the other hand, we find for eacha > 0

Far (A =/[0 )e_’“ unk(dt)+/ e MMy (dr)
a

[a’m)

/ e M .Uvnk(df)"“’_%lafnk (l A).
[0.a) 2

If we let k — oo and then ¢ — oo along a sequence of continuity points of yu we
get f(A) < f[o,oo) e~ u(dt) which shows that f € CM and that the measure j is
actually independent of the particular subsequence. In particular, u = limy— o0 tn
vaguely in the space of measures supported in [0, 00). O

/N



