I Brady

* Access to Ad>vanced Features
For Serléus Programmers

AL STEVENS

8762328

Development Tools

for the IBM PC

Al Stevens

MIET

E8762328

A Brady Book
Published by Prentice Hall Press
New York, New York 10023

C Development Tools for the IBM PC

C Development Tools for the IBM PC

Copyright © 1986.

All rights reserved

including the right of reproduction
in whole or in part in any form.

A Brady Book

Published by Prentice Hall Press

A Division of Simon & Schuster, Inc.
Gulf & Western Building

1 Gulf & Western Plaza

New York, New York 10023

PRENTICE HALL PRESS is a trademark of Simon & Schuster, Inc.
Manufactured in the United States of America

12345678910

Library of Congress Cataloging-in-Publication Data
Stevens, Al, 1940-

C development tools for the IBM PC.

Includes index.

1. C (Computer program language) 2. IBM Personal
Computer—Programming. 1. Title.

QAT76.73.C155873 1986 005.265 85-16660

ISBN 0-89303-612-9

5732328

C Development Tools for the IBM PC

Limits of Liability and

Disclaimer of Warranty

The author(s) and publisher of this book have used their best
efforts in preparing this book and the programs contained in it.
These efforts include the development, research, and testing of
the theories and programs to determine their effectiveness. The
author(s) and publisher make no warranty of any kind, expressed
or implied, with regard to these programs or the documentation
contained in this book. The author(s) and publisher shall not be
liable in any event for incidental or consequential damages in con-
nection with, or arising out of, the furnishing, performance, or
use of these programs.

[Registered Trademarks

The IBM Personal Computer is a registered trademark of Interna-
tional Business Machines, Inc.

C Development Tools for the IBM PC

About the Author

AL STEVENS has been a computer
programmer and systems analyst for
more than 27 years. His programming
career has spanned several generations
of computers, from those with vacuum
tube logic to the recent personal com-
puter. For the last seven years, Al has
been an independent consultant with
clients in business, industry, and gov-
ernment. He helps his clients with
. requirements analyses, proposals, soft-
ware specifications, and data base design, but he prefers program-
ming. He began using the C programming language in 1982 and
now regards it as “the ideal language for the professional pro-
grammer.”

When he isn’t writing software, Al actively pursues interests in
music, art, and airplanes. He has been employed at various times
as a newspaper cartoonist, a jazz pianist, a dixieland cornet player,
and an automobile mechanic.

This is his first book.

C Development Tools for the IBM PC

[Foreword

This book has reusable C language software tools that directly
support the development of on-line, interactive, software systems.
The tools are developed to run on an IBM PC, XT, or AT, but,
since the code is written to minimize the few portability problems
associated with C, other implementations are possible.

The collection includes file management, indexed data manage-
ment using B-trees, executive menu management, screen forms
management, and the sorting of data, either from file to file or as
an in-line function to a program. This book is unique because it
provides these capabilities to you, the programmer, in source code
form with no royalties or other strings attached. Many examples
throughout this book use these tools, and a discussion of the
underlying principles applied in their development is included.

These software tools are not mere textbook examples. They are
genuine, functioning software modules in use in many real appli-
cations around the country. I wrote the programs for use in a soft-
ware consulting practice. The book came later in reaction to the
interest expressed by colleagues and clients in the toolset and its
use.

Acknowledgments

Thanks are due to Ron Herold and Pat Thursam who helped
me by critiquing early versions of the manuscript. I also wish to
express my gratitude to Ted Byrne who made significant contribu-
tions to the content and style of the work. A word of thanks goes
to Terry Anderson for his guidance and supervision. And special
thanks is for Judy Stevens, my wife, friend (and companion). She
helped with the editing and logistics, and she was patient.

C Development Tools for the IBM PC

About the Source Code

The software in this book is used in a wide number of systems in
the installations of my clients. Here is a list of some applications
where the toolset functions are in use.

1. A data base administrator’s package that manages the data
element dictionary and data descriptions for a relational
data base.

2. A government procurement and contracts financial manage-
ment system.

3. A multiuser system simulator.

4. The membership and catalog processing for a video tape
rental store.

5. A C language cross reference utility package.

6. A government architect and engineering bid specification
text management system.

7. A facilities design and construction project management
system.

The source code in Appendix A is available to anyone. You
can key it in from the listings in Appendix A, or you may prefer
to purchase it on an IBM PC-compatible double-sided diskette by
mail order. Send $25.00 to:

C Software Toolset
2983 Newfound Harbor Drive
Merritt Island, FL 32952

(Florida residents please add 6% sales tax.)

vi

C Development Tools for the IBM PC

[Preface

We are currently experiencing a phenomenon that has come to
be known as the “information explosion,” a condition where the
availability and demand for information exceeds our ability to
process it. This circumstance has been nurtured and fed by the
remarkably wide proliferation of small, inexpensive computers; as
the potential for information processing has grown, its demand
has also grown. ’

The growth in demand for processed information has spawned a
parallel phenomenon called the “software crunch,” meaning a
shortage of information-processing software. Not enough expen-
sive software is available to feed the inexpensive hardware, and
there are not enough programmers to develop it.

This shortage of programs and programmers can be dealt with
in two ways: by increasing the number of programmers who are
producing code, and by improving the productivity of the ones we
already have. The first approach involves the school system. Uni-
versity computer science departments are grinding out graduates
as fast as they can, and there is no problem replacing them with
new, eager freshmen. The second solution, improving the produc-
tivity of the individual programmer, is necessary regardless of how
many there are and is the reason the software in this book was
developed. Tomorrow’s programmer must be more productive
than today’s.

A lot has been written on the subject of programmer productiv-
ity and how to improve it. Most of the research addresses itself to
either the problems of managing software projects or the methods
and techniques of software design and development. Both views
are valid, and both have been seriously examined and expanded
upon during the past two decades. Unfortunately, we have yet to
correct the dilemma which is characterized by this wry observa-
tion found tacked above programmers’ desks:

“Good, fast, cheap—select two.”

The sad fact is that when we select two, there is no assurance of

C Development Tools for the IBM PC

a successful outcome; often we cannot get even one out of the
three.

Disciplined software development is clearly understood and
taught today, but too often large projects ignore the advanced
methods developed from years of research and experience. In this
book, I will explain those methods that influenced the develop-
ment of my software tool collection. By example, you will be
urged to accept the practices of structured programming, informa-
tion hiding and, most of all, software tool building. If you do not
already know what these things are, then you will learn and not a
day too soon.

This book identifies the components of interactive computer
applications common among many systems. Applying the disci-
plines just named I developed those components in a way that will
allow them to be reuseable. This constitutes a personal collection
of software tools, one that allows a programmer to be more pro-
ductive. The quantity of code required for a given program is pro-
portionately reduced by the size and scope of the applicable tools
from the toolset. The less code you need to write, the more pro-

. grams you can complete.

This book, then, has four purposes:

1. To promote the use of software tools in the development of
interactive systems.

2. To provide a healthy starter set of useful tools for the C
programmer.

3. To set an example of orderly and disciplined design and
development practices, characterized by reusable tools and
the disciplines of structured programming, portability, and
information hiding.

4. To provide the reader with motivation and materials to
become a more productive programmer.

This is most appropriate on the eve of an era when the attribute
of productivity, more than any other, will mark the difference
between success and failure in the profession.

Al Stevens

C Development Tools for the IBM PC

Contents

Preface ix

1 Introduction 1

Some Definitions 2/The Tools 2/Menu Management 3/Data

* Screen Managemert 4/B-Tree Index Management 4/File
Record Management 6/Record Buffer Management 7/
Sorting 7/Why This Tool Collection? 8/The User
Environment 9/The C Language 11/The Hardware 12/
Reading List 12/Conclusions 13

2 Software Development Philosophy 15

Portability 16/ Top-Down Design 21/Bottom-Up
Development 25/The Design and Development

Environment 26/Structured Programming 27/A Structured
Tool Collection 29/Information Hiding 33/Software Tools 34

& Summary of C Software Development Tools 37

Subroutines 38/ Terminal-Dependent Functions 38/Cache
Memory Management Functions 38/Data File Management
Functions 38/Menu Management Functions 39/Screen
Management Functions 39/Sort Functions 39/B-Tree
Management Functions 39

4, The Subroutines 41

Summary 44 P

B Terminal-Dependent Functions 45

Terminal Example 47/Terminal Functions 49/Summary 50

® Cache Memory 51

The Cache Theory 52/Cache Memory Functions 57/
Summary 58

vii

"

C ngelopment Tools for the IBM PC

7 Data File Management 59

Data File Management Example 63/Data File Management
Functions 64/Summary 69

Menu Management 71
Menu Function 80/Summary 81

® Data Screen Management 83

The Top-Down Approach to Screen Management 86/Screen
Design 86/Building a Screen Definition 88/Screen Tables 89/
Data Entry 91/Screen Data Initialization 92/The DITTO

Key 92/Entry Help Processing 93/Data Validation 93/
Completion of Data Entry 95/Screen Management Global
Definitions 95/An Example of Screen Management 96/ Screen
Functions 97/Summary 99

10 Data Sorting 101
Sorting Data Using the Toolset 102/Sort Examples 104/
Stand-alone Sort 110/ The Sort Functions 115/Summary 118
11 B-Tree Index Management 119

What is a B-Tree 120/Searching a B-Tree 121/Key

Insertion 123/Key Deletion 125/Tree Balance 126/What's in
a Node 126/How the Pointers Work 128/The Efficiency of
the B-Tree 128/A B-Tree Example 129/ The B-Tree
Functions 130/Summary 135

12 Toolset Example 137

Summary 145
Appendices

/A The C Programmer’s Workshop: C Language
Source Code 149

A Study in Portability 229
Index 237

¢

viii

Introduction

This is a book about C language software tools for interactive
systems. Interactive systems are systems where a user interacts
with the computer to process some information. This book in-
cludes C source code for many of the functions common to this
environment. It does not try to teach you how to program or how
C works; there are other texts for those purposes. It will, however,
try to influence your thoughts about programming and style. This
book is intended to fill a void that the author has encountered
during the development of software systems.

Who is the audience for this book? You are a programmer who
will be writing programs for on-line users in an interactive envi-
ronment. You need to understand the fundamentals of data stor-
age and retrieval and the requirements for data entry and display,
and you need a set of software tools that helps you apply that
understanding to the creation of interactive software systems.

I begin to fill those needs with this software. At the same time I
introduce several algorithms that you might not have seen in
source code before, and I set the examples of structured program-
ming and software tool building.

The software tools in this book run on the IBM Personal Com-
puter, but these principles are applicable in ofher environments.
The functions compile and execute by using the Aztec C86
Compiler, the De Smet C Compiler, and the Lattice C Compiler.
These compilers are accurate implementations of “standard” C.
That is, they implement most of the language as defined by
Kernighan and Ritchie in “The C Programming Language.” All
three compilers come with a nearly complete standard library of

1. Introduction

functions. This standard library lets us develop code that has a
better chance to be portable—to be moved from system to system.

Some Def-
initions

In these discussions, we define the person who uses the software
you develop as the “user.” The “user interface” is the dialogue
between the computer and the user. An “application” is the user’s
use for the system, as in a personnel or payroll application. A soft-
ware function that calls another function is called the “caller” or
the “calling program or function.” A “function” is a module of C
source code, as in the idiom of the language. A “process,” as used
here, is a generic use of the computer system within the applica-
tion, such as the generation of a report.

The Tools

Many software components are common to most on-line, inter-
active systems. In this book, I specifically address a certain cate-
gory of application (discussed later). These components are alike
enough in their implementations that they can be supported by
using a common set of software functions. Let’s identify and
explain the components. They are:

Menu Management

Data Screen Management
B-Tree Index Management
File Record Management
Record Buffer Management
Sorting

A full set of software functions that adequately supports these
components is the beginning of a good software development tool
collection. In this book I develop a C programmer’s toolset
through the use of reusable C language functions.

Figure 1-1 is the system architecture for a software system devel-
oped around the C tool functions. The shaded box represents the
applications functions; the rest of the boxes are toolset functions.
The figure shows the top-down relationships of each of the sets of
functions. A function is called by those above it and calls those
below it; the cylinders are disk files and the arrows show the direc-
tion of data. Suppose that the shaded box is a set of functions to
support the interactive processes of membership accounting for an

-

;
Menu Managerﬁent

association or a club. If the system is not very complex, there
might be 500 lines of code. The rest of the system is handled by
the several thousand lines of code from the C software toolset.
The advantages of a tool collection are becoming obvious.

Menu
Manager
Application /

Software Sort
Parameters

Data B-Tree File & '
Screen Index Record Sort tandalone

Manager Manager Manager Sort

L | |

Record

Buffer

Cache
Manager

O 3
B-Trees D'ata
Files

Figure 1-1. C tool functions: system architecture.

Menu Traditional interactive computer systems use menus to allow the
Manage- user to control the execution of programs. Recently, wonderful

" machines like the Macintosh have emerged with things called
men

“icons” and hardware “mice” to improve the user-machine inter-

1. Introduction

face. These are some great concepts, but the software in this book
is not aimed at these techniques. Not yet, anyway. The large
majority of today’s systems, and, I would guess, the large majority
of those to be sold for the next several years are going to use
the old-fashioned keyboard and screen. That is the environment
supported by the software in this book. That environment uses
menus.

Data
Screen
Manage-
ment

Most on-line systems communicate with the user by using the
video screen, and the user communicates with the system by using
the keyboard. The terminal is the medium. In the typical personal
computer BASIC program a lot of PRINT and INPUT statements
manage this dialogue. These statements represent system prompts
and user-entered data items in response to those prompts. It is my
goal to replace this BASIC programming technique with a toolset
of C functions for controlling the user interface in a consistent
manner. The objective is to eliminate a lot of redundant program-
ming and achieve a measure of consistency in the user interface.
A library of such functions can be used again and again, thereby
reducing the programming effort required for the development of
subsequent applications. This is the strength and the common
sense of software tool building.

The system developer describes screen formats and provides
data collection buffers, and the functions do the rest. Well,
almost. Exit points must be provided for the functions to call cus-
tom code which does those jobs that are specific to a particular
application—special data validation, help to the user, record
retrieval, and so on.

B-Tree
Index
Manage-
ment

Interactive systems access on-line data from a random access
storage device such as a hard disk. To be interactive, this access
needs to be fast. It needs to be fast enough that the user doesn’t
suffer undue delay. Therefore, the computer system must be able
to locate a record of data from anywhere in perhaps tens of thou-
sands of records and retrieve it and do something meaningful with
it in a very short time. The retrieval is based on some descriptive
data entered by the user. For example, a personnel system user
may wish to locate the record of a single employee based upon the

B-Tree Index Management

employee number. There are a lot of techniques for doing this;
different environments can be supported with different tech-
niques. In the interactive environment the records in a file must
be located by using various data items at different times. The
employee might be located by employee number for one retrieval,
by social security number in a different retrieval, by last name in a
third, or by department in another. This requires a technique
where files can be searched by using the values of more than one
data item and where some item values are known to uniquely
identify a record (a given employee number is in only one em-
ployee file record), while others can be shared by multiple records
(the same department number can appear in more than one
employee record). The data item used for the search is called a
“key.” A data item, which is the primary identification for a
record (for example, the employee number in the employee file
record), is called the “primary” key. A nonprimary key data item
that can also be used to search a file (for example, the department
number in the employee file record) is called the “secondary” key.
Usually, the primary key is unique in a file, and secondary keys
can have multiple occurrences of the same value.

A common technique for supporting a data file with multiple
keys is the use of inverted indices. An inverted index is another
file that is a table of the data item values and is maintained sepa-
rate from the data file itself. It contains an entry for each value of
the data item in the data file and a pointer to the data file record
that contains the value. When searched, the index yields the file
record address of the relevant data record. The search must be
efficient; if there are a lot of entries in the index, its structure must
support some technique for rapidly finding a desired entry. The
index itself must be maintained. That is, if a data record is added,
the index must be updated with an entry to point to the new
record. When a record is deleted, the index entry that points to it
must also be deleted. When a record is modified, and the change
is to an indexed item, the old entry in the index must be deleted,
and the new one must be added. To achieve an interactive envi-
ronment, these index maintenance operations must be fast.

There is a technique for inverted index table maintenance
called the B-tree. This is a hierarchical structure of balanced
(hence “B-”) indices which has the property of providing fast key
retrieval and updates. It is maintained external to the data struc-

@ 1. Introduction «

ture of the file it supports, so it can be eliminated or built at any
time without affecting the integrity of the data itself. The tree
structure of the index allows a particular entry to be found with a
minimal number of key value comparisons. It has the additional
capability of providing instant sequential access to the file using
the indexed data item. This sequencing can be in ascending or
descending order and can start from any record in the file. This
often eliminates the need for data file sorting; a given file can be
processed as though it were in any of several sequences without
the need for an intervening sort pass. This saves a lot of time for
on-line retrievals of ordered data.

B-trees are very popular among the developers of data base
management system software packages. The B-tree structure has
the fascinating ability to appear maintenance-free. Older methods
of inverted indexing always seemed to require periodic rebalanc-
ing or reorganizing of the indices to maintain efficiency. The B-
tree grows and subsides by itself and rarely needs tending.

There must be software functions to build, maintain, and
retrieve keys from B-trees. Therefore, this book includes a com-
plete set of B-tree inverted index functions. With these, our tool-
set expands, as does our understanding of advanced data struc-
tures. The B-tree functions represent a significant and complex
piece of code. The technique itself is popular; books are available
that explain it in-depth, and software packages are available that
implement it, but the source code is rarely made available.

File
Record
Manage-
ment

When a data record is stored on a disk, it must be written in a
location that is known to be available (not already in use) and
that can be remembered later when the record is to be read back
in. Operating system file managers will allocate physical disk space
to a file and provide a directory that allows an application pro-
gram to find it. Programming languages provide the interface
between the application software and the operating system to
open and close files and to read and write records. It is the respon-
sibility of the programmer to manage the functional integrity of
the data in the records.

The software in this book provides for the description of a file of
fixed length records of any size and the random storage and
retrieval of a record based upon the record number relative to its

