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PREFACE

This book is about Lorentzian geometry, the mathematical theory used
in general relativity, treated from the viewpoint of global differen-
tial geometry. Our goal is to help bridge the gap between modern
differential geometry and the mathematical physics of general relativ-
ity by giving an invariant treatment of global Lorentzian geometry.
The growing importance in physics of this approach is clearly illus-
trated by the recent Hawking-Penrose singularity theorems described
in the text of Hawking and Ellis (1973).

The Lorentzian distance function is used as a unifying concept
in our book. Furthermore, we frequently compare and contrast the
results and techniques of Lorentzian geometry to those of Riemannian
geometry to alert the reader to the basic differences between these
two geometries.

This book has been written especially for the mathematician who
has a basic acquaintance with Riemannian geometry and wishes to learn
Lorentzian geometry. Accordingly, this book is written using the
notation and methods of modern differential geometry. For readers
less familiar with this notation, we have included Appendix A which
gives the local coordinate representations for the symbols used.

The basic prerequisites for this book are a working knowledge
of general topology and differential geometry. Thus this book should
be accessible to advanced graduate students in either mathematics or

mathematical physics.
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iv Preface

In writing this monograph, both authors profited greatly from
the opportunity to lecture on part of this material during the spring
semester, 1978, at the University of Missouri-Columbia. The second
author also gave a series of lectures on this material in Ernst Ruh's
seminar in differential geometry at Bonn University during the summer
semester, 1978, and would like to thank Professor Ruh for giving him
the opportunity to speak on this material. We would like to thank
C. Ahlbrandt, D. Carlson, and M. Jacobs for several helpful conver-
sations on Section 2.4 and the calculus of variations. We would like
to thank M. Engman, S. Harris, K. Nomizu, T. Powell, D. Retzloff, and
H. Wu for helpful comments on our preliminary version of this mono-
graph. We also thank S. Harris for contributing Appendix D to this
monograph and J.-H. Eschenburg for calling our attention to the
Diplomarbeit of BSlts (1977). To anyone who has read either of the
excellent books of Gromoll, Klingenberg, and Meyer (1975) on
Riemannian manifolds or of Hawking and Ellis (1973) on general
relativity, our debt to these authors in writing this work will be
obvious. It is also a pleasure for both authors to thank the
Research Council of the University of Missouri-Columbia and for the
second author to thank the Sonderforschungsbereich Theoretische
Mathematik 40 of the Mathematics Department, Bonn University, and
to acknowledge an NSF Grant MCS77-18723(02) held at the Institute
for Advanced Study, Princeton, New Jersey, for partial financial
support while we were working on this monograph. Finally it is a
pleasure to thank Diane Coffman, DeAnna Williamson, and Debra

Retzloff for the patient and cheerful typing of the manuscript.

John K. Beem
Paul E. Ehrlich
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Chapter 1

INTRODUCTION: RIEMANNIAN THEMES IN LORENTZIAN GEOMETRY

Recent progress on causality theory, singularity theory, and black
holes in general relativity described in the influential text of
Hawking and Ellis (1973) has resulted in a resurgence of interest
in global Lorentzian geometry. Indeed, a better understanding of
global Lorentzian geometry was required for the development of
singularity theory. For example, it was necessary to know that
causally related points in globally hyperbolic subsets of space-
times could be joined by a nonspacelike geodesic segment maximizing
the Lorentzian arc length among all nonspacelike curves joining the
two given points. In addition, much work done in the 1970s on foli-
ating asymptotically flat Lorentzian manifolds by families of maxi-
mal hypersurfaces has been motivated by general relativity [cf.
Choquet—Bruhat,.Fisher, and Marsden (1979) for a partial list of
references].

All of these results naturally suggest that a systematic study
of global Lorentzian geometry should be made. The development of
""modern' global Riemannian geometry as described in any of the
standard texts [cf. Bishop and Crittenden (1964), Gromoll, Klingen-
berg, and Meyer (1975), Helgason (1962), Hicks (1965)] supports the
idea that a comprehensive treatment of global Lorentzian geometry
should be grounded in three fundamental topics: geodesic and metric
completeness, the Lorentzian distance function, and a Morse index
theory valid for nonspacelike geodesic segments in an arbitrary

Lorentzian manifold.



2 Chap. 1 Introduction

Geodesic completeness, or more accurately, geodesic
incompleteness, has played a crucial role in the development of
singularity theory in general relativity and has been thoroughly ex-
plored within this framework. However the Lorentzian distance func-
tion has not been as well investigated, although it has been of some
use in the study of singularities [cf. Hawking (1967), Hawking and
Ellis (1973), Tipler (1977a), Beem and Ehrlich (1979a)]. Some of the
properties of the Lorentzian distance function needed in general
relativity are briefly described in Hawking and Ellis (1973, PP-
215-217). Further results relating Lorentzian distance to causality
and the global behavior of nonspacelike geodesics have been given in
Beem and Ehrlich (1979b).

Uhlenbeck (1975), Everson and Talbot (1976), and Woodhouse
(1976) have studied Morse index theory for globally hyperbolic
space-times and we have sketched [cf. Beem and Ehrlich (1979 c¢,d)]

a Morse index theory for nonspacelike geodesics in arbitrary space-
times. But no complete treatment of this theory for arbitrary
space-times has been published previously.

It is the purpose of this monograph to first review known re-
sults on geodesic and metric completeness. Then we give a detailed
treatment of the Lorentzian distance function and of the Morse index
theory for nonspacelike geodesics in arbitrary space-times. Finally
we show how these concepts may be applied to global Lorentzian
geometry and singularity theory in general relativity.

The Lorentzian distance function has many similarities with the
Riemannian distance function but also many differences. Since the
Lorentzian distance function is not so well known, we now review the
main properties of the Riemannian distance function, then compare
and contrast the corresponding results for the Lorentzian distance
function.

For the rest of this portion of the introduction, we will let
(N,go) denote a Riemannian manifold and (M,g) denote a Lorentzian
manifold, respectively.

Thus N is a smooth paracompact manifold equipped with a posi-

tive definite inner product g0 ¢ TPN X TpN —> R on each tangent
p
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space T N. In addition, if X and Y are arbitrary smooth vector
fields on N, the function N —> R given by p —> gO(X(p),Y(p))
is required to be a smooth function. The Riemannian structure

gy ° TN x TN —> R then defines the Riemannian distance function

d0 : N x N—> [0,»)

as follows. Let Qp q denote the set of piecewise smooth curves in
N from p to q. Given c € Qp q’ ¢ : [0,1] — N, there is a finite
iti = TR < = i
partition 0 = t; <t, < t, = 1 such that c | [t;,t;,,] is
smooth for each i. The Riemannian arc length of c with respect to

&g is defined as

t.
k-1 (7i+l
L@ = I | YegETmeT ) at
t

i=1

i
The Riemannian distance do(p,q) between p and q is then defined to

be

= i . >
do(p,q) 1nf{L0(c) . c€ Qp,q} 0

For any Riemannian metric g for N, the function d0 : Nx N— [0,°)
has the following properties:

(1) dyp,q) = d,(q,p) for all p,q € N.

(2) do(p,q) < do(p,r) + do(r,q) for all p,q,r € N.

(3) dy(p,q) = 0 iff p = q.
More surprisingly,

(4) d. : NxN— [0,°) is continuous and the family of metric

0
balls

B(p,e) = {q €N : d(p,q) < e}

for all p €N and e > 0 forms a basis for the given mani-
fold topology.
Thus the metric topology and the given manifold topology coincide.
Furthermore, by a result of Whitehead (1932), given any p € N, there
exists an R > 0 such that for any e with 0 < e <R, the metric ball
B(p,e) is geodesically convex. Thus for any € with 0 < e <R,
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the set B(p,e) is diffeomorphic to the n disk, n = dim(N), and the
set {q € N : d(p,q) = e} is diffeomorphic to g
Removing the origin from RZ equipped with the usual Euclidean
metric and setting p = (-1,0), q = (1,0), one calculates that
do(p,q) = 2, but finds no curve c € Qp,q with Lo(c) = do(p,q) and
also no smooth geodesic from p to q.
Thus the following questions arise naturally. Given a manifold
N, find conditions on a Riemannian metric go for N such that
(i) All geodesics in N may be extended to be defined on all of
R.
(ii) The pair (N,do) is a complete metric space in the sense
that all Cauchy sequences converge.
(iii) Given any two points p,q € N, there is a smooth geodesic
segment c € Qp,q with LO(C) = do(p,q).
A distance realizing geodesic segment as in (iii) is called a minimal
geodesic segment. The word minimal is used here since the definition
of Riemannian distance implies that LO(Y) > do(p,q) for all y € Q )
More generally, one may define an arbitrary piecewise smooth curve
YGS%)q to be minimal if LO(Y) = do(p,q). Using the variation theory

>

of the arc length functional, it may be shown that if y € Qp,q is
minimal, then y may be reparameterized to a smooth geodesic segment.
The question of finding criteria on g such that (i), (ii), or
(iii) hold was resolved by H. Hopf and W. Rinow in their famous paper
(1931). 1In modern terminology the Hopf-Rinow theorem asserts the

following:

HOPF-RINOW THEOREM For any Riemannian manifold (N,go) the following
are equivalent:
(a) Metric completeness: (N,do) is a complete metric space.
(b) Geodesic completeness: For any v € TN, the geodesic c(t)
in N with ¢'(0) = v is defined for all positive and nega-
tive real numbers t € R.
(c). For some p € N, the exponential map expp is defined on the

entire tangent space TPN to N at p.
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(d) Finite compactness: Every subset K of N that is d0 bounded
(i.e., sup{do(p,q) : p,q € K} <) has compact closure.

Furthermore, if any of (a) through (d) holds, then

(e) Given any p,q € N, there exists a smooth geodesic segment

¢ from p to q with L,(c) = d,(p,a).

A Riemannian manifold (N,go) is said to be complete provided
any one (and hence all) of conditions (a) through (d) is satisfied.
It should be stressed that the Hopf-Rinow theorem guarantees the
equivalence of metric and geodesic completeness and also that all
Riemannian metrics for a compact smooth manifold are complete.
Unfortunately, none of these statements are valid for arbitrary
Lorentzian manifolds.

A remaining question for noncompact but paracompact manifolds
is the existence of complete Riemannian metrics. This was settled
by Nomizu and Ozeki's (1961) proof that given any Riemannian metric
g, for N, there is a complete Riemannian metric for N globally con-
formal to gy Since any paracompact, connected smooth manifold N
admits a Riemannian metric by a partition of unity argument, N also
admits a complete Riemannian metric.

We now turn our attention to the Lorentzian manifold (M,g). A
Lorentzian metric g for the smooth paracompact manifold M is the
assignment of a nondegenerate bilinear form g H TpM X TPM —> R
with diagonal form (-, +, ..., +) to each tangent space. It is well
known that if M is compact and x(M) # 0, then M admits no Lorentzian
metrics. On the other hand, any noncompact manifold admits a
Lorentzian metric. Geroch (1968a) and Marante (1972) have also
shown that a smooth Hausdorff manifold which admits a Lorentzian
metric is paracompact.

Nonzero tangent vectors are classified as timelike, spacelike,
nonspacelike, or null, respectively, according to whether g(v,v) <0,
resp., > 0, < 0, = 0. [Some authors use the convention (+, -, ..., -)
for the Lorentzian metric and hence all of the inequality signs in

the above definition are reversed for them.] A Lorentzian manifold
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(M,g) is said to be time oriented if M admits a continuous, nowhere
vanishing timelike vector field X. This vector field is used to
separate the nonspacelike vectors at each point into two classes,
called future directed and past directed. A space-time is then a
Lorentzian manifold (M,g) together with a choice of time orientation.
We will usually work with space-times below.

In order to define the Lorentzian distance function and discuss
its properties, we need to introduce some concepts from elementary
causality theory. It is standard to write p << q if there is a
future-directed piecewise smooth timelike curve in M from p to q,
and p < q if p = q or if there is a future directed piecewise smooth
nonspacelike curve in M from p to q. The chronological past and
future of p are then given respectively by I (p) = {q€ M : q << p}
and I+(p) = {qe M : p<<q}. The causal past and future of p are
defined as J (p) = {qE€ M : q < p} and J'(p) ={qeM: p<gq}. The
sets I (p) and I+(p) are always open in any space-time, but the sets
J™ (p) and J+(p) are neither open nor closed in general (cf. Figure
1.1).

The causal structure of the space-time (M,g) may be defined as
the collection of past and future sets at all points of M together
with their properties. It may be shown that two strongly causal
Lorentzian metrics g1 and g, for M determine the same past and
future sets at all points iff the two metrics are globally conformal
[ive., g = ng for some smooth function © : M —> (0,@)]. Letting
C(M,g) denote the set of Lorentzian metrics globally conformal to
g, it follows that properties suitably defined using the past and
future sets hold simultaneously either for all metrics in C(M,g) or
for no metrics in C(M,g). Thus all of the basic properties of
elementary causality theory depend only on the conformal class
C(M,g) and not on the choice of Lorentzian metric representing
CM,g).

Perhaps the two most elementary properties to require of the
conformal structure C(M,g) are either that (M,g) be chronological

or that (M,g) be causal. A space-time (M,g) is said to be



