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Preface

Formal methods provide system designers with the possibility to analyze system
models and reason about them with mathematical precision and rigor. The use
of formal methods is not restricted to the early development phases of a system,
though. The different testing phases can also benefit from them to ease the pro-
duction and application of effective and efficient tests. Many still regard formal
methods and testing as an odd combination. Formal methods traditionally aim
at verifying and proving correctness (a typical academic activity), while testing
shows only the presence of errors (this is what practitioners do). Nonetheless,
there is an increasing interest in the use of formal methods in software testing. It
is expected that formal approaches are about to make a major impact on emerg-
ing testing technologies and practices. Testing proves to be a good starting point
for introducing formal methods in the software development process.

This volume contains the papers presented at the 3rd Workshop on Formal
Approaches to Testing of Software, FATES 2003, that was in affiliation with the
IEEE/ACM Conference on Automated Software Engineering (ASE 2003). This
year, FATES received 43 submissions. Each submission was reviewed by at least
three independent reviewers from the program committee with the help of ad-
ditional reviewers. Based on their evaluations, 18 papers submitted by authors
from 13 different countries were selected for presentation at the workshop. The
papers present different approaches to using formal methods in software test-
ing. One of the main themes is the generation of an efficient and effective set of
test cases from a formal description. Different models and formalisms are used,
such as finite state machines, input/output transition systems, timed automata,
UML, and Abstract State Machines. An increasing number of test methodolo-
gies (re)uses techniques from model checking. The prospects for using formal
methods to improve software quality and reduce the cost of software testing
are encouraging. But more efforts are needed, both in developing new theories
and making existing methods applicable to the current practice of software de-
velopment projects. Without doubt, coming FATES workshops will continue to
contribute to the growing and evolving research activities in this field.

We wish to express our gratitude to the authors for their valuable contribu-
tions. We thank the program committee and the additional reviewers for their
support in the paper selection process. Last but not least, we thank May Haydar
who helped in organizing the proceedings and all persons from the Centre de
Recherche Informatique de Montréal and the organizing committee of ASE 2003
who were involved in arranging local matters.

Montréal and Miinchen Alexandre Petrenko, Andreas Ulrich
October 2003 FATES 2003 Co-chairs
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Black-Box Testing of Grey-Box Behavior

Benjamin Tyler and Neelam Soundarajan

Computer and Information Science
Ohio State University, Columbus, OH 43210, USA
{tyler,neelam}@cis.ohio-state.edu

Abstract. Object-oriented frameworks are designed to provide function-
ality common to a variety of applications. Developers use these frame-
works in building their own specialized applications, often without having
the source code of the original framework. Unfortunately, the interactions
between the framework components and the new application code can
lead to behaviors that could not be predicted even if valid black-boz spec-
ifications were provided for the framework components. What is needed
are grey-boz specifications that include information about sequences of
method calls made by the original framework code. Our focus is on how
to test frameworks against such specifications, which requires the ability
to monitor such method calls made by the framework during testing.
The problem is that without the source code of the framework, we can-
not resort to code instrumentation to track these calls. We develop an
approach that allows us to do this, and demonstrate it on a simple case
study.

1 Introduction

An important feature of object-oriented (OO) languages is the possibility of en-
riching or extending the functionality of an OO system [18] by providing, in
derived classes, suitable definitions or re-definitions for some of the methods of
some of the classes of the given system. Application frameworks [9,13, 20] pro-
vide compelling examples of such enrichment. The framework includes a number
of hooks, methods that are not (necessarily) defined in the framework but are
invoked in specific, and often fairly involved, patterns by the polymorphic or tem-
plate methods [11] defined in the framework. An application developer can build a
complete customized application by simply providing appropriate (re-)definitions
for the hook methods, suited to the needs of the particular application. The calls
to the hook methods from the template methods are dispatched to the methods
defined by the application developer, so that the template methods also ex-
hibit behavior tailored to the particular application. Since the patterns of hook
method calls implemented in the template methods are often among the most
intricate part of the overall application, a well designed framework can be of
great help in building applications, and maximizes the amount of reuse among
the applications built on it. Our goal is to investigate approaches to perform
specification-based testing of such frameworks.

Testing such systems should clearly include testing these patterns of hook
method calls. That is, we are interested in testing what is called the grey-boz

A. Petrenko and A. Ulrich (Eds.): FATES 2003, LNCS 2931, pp. 1-14, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 Benjamin Tyler and Neelam Soundarajan

behavior [2,5,10,22] of OO systems, not just their black-bor behavior. If we
had access to the source code of the template methods, we could do this by
instrumenting that code by inserting suitable instructions at appropriate points
to record information about the hook method calls; for example, just prior to
each such call, we could record the identity of the method being called, the
values of the arguments, etc. But framework vendors, because of proprietary
considerations, often will not provide the source code of their systems. Hence
the challenge we face is to find a way to test the grey-box behavior of template
methods without being able to make any changes to its code such as adding
“monitoring code”, indeed without even having the file containing source code
of the system.

In this paper, we develop an approach that allows us to do this. The key idea
underlying our approach is to exploit polymorphism to intercept hook method
calls made by the template method being tested. When the hook method call is
intercepted, the testing system will record the necessary information about the
call, and then allow “normal” execution to resume. In a sense, the testing system
that we build for testing a given framework is itself an application built on the
framework being tested. This “application” can be generated automatically given
information about the structure of the various classes that are part of the frame-
work including the names and parameter types of the various methods and their
specifications, and the compiled code of the framework. We have implemented
a prototype test system generator that accomplishes this task. We present some
details about our prototype later in the paper.

1.1 Black-Box vs. Grey-Box Behavior

How do we specify grey-box behavior? Standard specifications [14, 18] in terms
of pre- and post-conditions for each method of each class in the system only
specify the black-box behavior of the method in question. Consider a template
(or polymorphic, we will use the terms interchangeably) method t(). There is
no information in the standard specification of t() about the hook method calls
that t() makes during execution. We can add such information by introducing a
trace variable [5,22], call it 7, as an auziliary variable [19] on which we record
information about the hook method calls t() makes. When the method starts
execution, 7 will be the empty sequence since at the start, t() has not made any
such calls. As t() executes, information about each hook method call it makes
will be recorded on 7. We can then specify the grey-box behavior by including,
in the post-condition of t(), not just information on the state of the object in
question when t() terminates, but also about the value of 7, i.e., about the hook
method calls t() made during its execution; we will see examples of this later in
the paper. Given such a grey-box specification, the key question we address is,
how do we test t(), without accessing or modifying its code, to see if its actual
grey-box behavior satisfies the specification?

1.2 Comparison to Related Work

A number of authors have addressed problems related to testing of polymorphic
interactions [1,21,3,17] in OO systems. In all of this work, the approach is to
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try to test the behavior of a polymorphic method t() by using objects of all or
many different derived classes to check whether t() behaves appropriately in each
case, given the different hook method definitions to which the calls in t() will
be dispatched, depending on the particular derived class that the given object is
an instance of. Such an approach is not suitable for testing frameworks. We are
interested in testing the framework independently of any application that may
be built on it, i.e., independently of particular derived classes and particular
definitions of the hook methods. The only suitable way to do this is to test it
directly to see that the actual sequences of hook method calls it makes during the
tests are consistent with its grey-box specification. The other key difference is
our focus on testing polymorphic methods without having access to their source
code.

Another important question, of course, has to do with coverage. Typical cov-
erage criteria that have been proposed [1,21,6] for testing polymorphic code
have been concerned with measuring the extent to which, for example, every
hook method call that appears in the polymorphic method is dispatched, in some
test run, to each definition of the hook method (in the various derived classes).
Clearly a criterion of this kind would be inappropriate for our purposes since our
goal is to test the polymorphic methods of the framework independently of any
derived classes. What we should aim for instead is to select test cases in such
a way as to ensure that as many as possible of the sequences of hook method
calls allowed by the grey-box specifications actually appear in the test runs. One
problem here, as in any specification-based testing approach, is that the spec-
ification only specifies what behavior is allowed; there is no requirement that
the system actually exhibit each behavior allowed by the specification. Hence,
measuring our coverage by checking the extent to which the different sequences
of hook method calls allowed by the specification show up in the test runs may
be too conservative if the framework is not actually capable of exhibiting some of
those sequences. Another approach, often used with specification-based testing,
is based on partitioning of the input space, i.e., the set of values allowed by the
pre-condition of the method. But partition-based testing suffers from some im-
portant problems [8,12] that raise concerns about its usefulness. We will return
to this question briefly in the final section but we should note that our focus
in this paper is developing an approach that, without needing us to access or
modifying the source code of a template method, allows us to check whether the
method meets its grey-box specification during a test run, rather than coverage
criteria.

1.3 Contributions

The main contributions of the paper may be summarized as follows:

— It identifies the importance of testing grey-box behavior of OO systems.

— It develops an approach to testing a system to see if it meets its grey-box
specification without accessing or modifying the code of the system under
test.

— It illustrates the approach by applying it to a simple case study.
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In Sect. 2 we consider how to specify grey-box behavior. In Sect. 3, we develop
our approach to testing against such specifications without accessing the code.
We use a simple case study as a running example in Sects. 2 and 3. In Sect. 4
we present some details of our prototype system. In Sect. 5, we summarize our
approach and consider future work.

2 Grey-Box Specifications

2.1 Limitations of Black-Box Specifications

Consider the Eater class, a simple class whose instances represent entities that
lead sedentary lives consisting of eating donuts and burgers, depicted in Fig. 1.
The methods Eat_Donuts() and Eat_Burgers() simply update the single mem-
ber variable cals_Eaten which keeps track of how many calories have been con-
sumed; the parameter n indicates how many donuts or burgers is to be consumed.
Pig_Out() is a template method and invokes the hook methods Eat_Donuts() and
Eat_Burgers().

class Eater {

protected int cals_Eaten = 0;

public void Eat_Donuts(int n) {
cals_Eaten = cals_Eaten + 200 * n;}

public void Eat_Burgers(int n) {
cals_Eaten = cals_Eaten + 400 * n;}

public final void Pig_Out() {
Eat_Donuts(2); Eat_Burgers(2); }

Fig. 1. Base class Eater.

Let us now consider the specification of Eater’s methods (Fig. 2). These can
be specified as usual in terms of pre- and post-conditions describing the effect
of each method on the member variables of the class. Here, we use the prime (')
notation in the post-conditions to refer to the value of the variable in question
at the time the method was invoked. Thus the specifications of Eat_Donuts() and
Eat_Burgers() state that each of them increments the value of cals_Eaten appropri-
ately. Given the behaviors of these methods, it is easy to see that the template
method Pig_Out() will meet its specification that it increments cals_Eaten by
1200.

Now suppose that the implementers of Eater provide only the compiled binary
file and the black-box specification shown in Fig. 2, but not the source code in
Fig. 1, to developers who wish to incorporate Eater in their own systems. What
can such developers safely say about their own new classes that are extensions
of Eater? Let us examine this question using the Eater_Jogger class, depicted in
Fig. 3. Eater_Jogger, which is a derived class of Eater, keeps track not only of
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pre.Eat_Donuts(n) = n>0 (2.1)
post.Eat_Donuts(n) = cals_Eaten = cals_Eaten’ + 200 * n
pre.Eat_Burgers(n) = n>0 (2.2)
post.Eat_Burgers(n) = cals_Eaten = cals_Eaten’ + 400 x n
pre.Pig_Out() true (2.3)

I

post.Pig_Out() cals_Eaten = cals_Eaten’ + 1200

Fig. 2. Eater’s black-box specification.

class Eater_Jogger extends Eater {
protected int cals_Burned = 0;
public void Jog() {
cals_Burned = cals_Burned + 500; }
public void Eat_Donuts(int n) {
cals_Eaten = cals_Eaten + 200 * n;
cals_Burned = cals_Burned + 5 * n;}
public void Eat_Burgers(int n) {

cals_Eaten = cals_Eaten + 400 * n;
cals_Burned = cals_Burned + 15 * n;}

}

Fig. 3. The derived class Eater_Jogger.

cals_Eaten but also the new data member cals_Burned. The new method Jog()
simply increments cals_Burned. More important, Eat_Donuts() and Eat_Burgers()
have been redefined to update cals_Burned.

What can we say about the behavior of Pig_-Out() in this derived class? More
precisely the question is, if ej is an object of type Eater_Jogger, what effect will the
call ej.Pig_Out() have on ej.cals_Eaten and ej.cals_.Burned? The calls in Pig_-Out()
to the hook methods will be dispatched to the methods redefined in Eater_Jogger.
If we had access to the body of Pig_Out() (defined in the base class), we can see
that it invokes Eat_Donuts(2) and then Eat_Burgers(2), and hence conclude, given
the behaviors of these methods as redefined in Eater_Jogger, that in this class,
Pig_Out() would increment cals_Eaten by 1200 and cals_Burned by 40. However,
we have assumed that we only have access to Eater’s black-box specification
shown in Fig. 2, but not the source code of Pig_Out().

Behavioral subtyping [15] provides part of the answer to this question. In
essence, a derived class D is a behavioral subtype of its base class B if every
method redefined in D satisfies its B-specification. If this requirement is met
then we can be sure that in the derived class, a template method t() will meet
its original specification ((2.3) in the case of Pig_Out()). This is because when
reasoning about the behavior of t() in the base class, we would have appealed
to the base class specifications of the hook methods when considering the calls
in t() to these methods. If these methods, as redefined in D, satisfy those speci-
fications, then clearly that reasoning still applies when the calls that t() makes
to these methods are dispatched to the redefined versions in D. Our redefined
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Eat_Donuts() and Eat_Burgers() do clearly satisfy their base class specifications
(2.1) and (2.2), hence Pig_Out() in the derived class will also meet its base class
specification (2.3).

But this is only part of the answer. The redefined hook methods not only
satisfy their base class specifications but exhibit richer behavior in terms of
their effect on the new variable cals_Burned, which is easily specified (Fig. 4).
Indeed, the whole point of redefining the hook methods was to achieve this
richer behavior; after all, if all we cared about was the base class behavior, there
would have been no need to redefine them at all. Not only is the hook methods’
behavior enriched through their redefinition, but the behavior of the template
method in the derived class will also be enriched even though its code was not
changed. How then, can we reason about this richer behavior of the template
method?

pre.Eat_Donuts(n)
post.Eat_Donuts(n)

n>0 (4.1)
cals_Eaten = cals_Eaten’ 4 200 % n
A cals_Burned = cals_Burned’ + 5 % n

n>0 (4.2)
cals_Eaten = cals_Eaten’ + 400 % n
A cals_Burned = cals_Burned’ + 15 % n

pre.Eat_Burgers(n)
post.Eat_Burgers(n)

(Tt

Fig. 4. Specifications for Eater_Jogger’s hook methods.

If we examine the specifications for the redefined hook methods shown in
Fig. 4, and (2.3), the black-box specification of Pig_Out(), can we arrive at the
richer behavior of Pig_Out() in Eater_Jogger, in particular that it will increment
cals_Burned by 407 The answer is clearly no, since there is nothing in (2.3) that
tells us which, if any, hook methods Pig_Out() calls and how many times and
with what argument values. Given (2.3), it is possible that it called Eat_Donuts()
once with 6 as the argument and never called Eat_Burgers(); or Eat_Burgers()
once with 3 as the argument, and Eat_Donuts() zero times; it is even possible
that Pig_Out() didn’t call either hook method even once and instead directly in-
cremented cals_Eaten by 1200. Even an implementation that called Eat_Donuts()
ten times with 2 as the argument each time and then decremented cals_Eaten by
2800 would work. All of these and more are possible, and depending on which
of these Pig_Out() actually does, its effect on cals_Burned will be different. Note
that for all of these cases, the original behavior (2.3) is still satisfied. That is
ensured by behavioral subtyping. But if we are to arrive at the richer behavior
of Pig_Out(), we need not just the black-box behavior of the template method
in the base class as specified in (2.3), but also its grey-box behavior.

2.2 Reasoning with Grey-Box Specifications

Consider the grey-boz specification (5.1) in Fig. 5. Here, 7 is the trace of this
template method. 7 is the empty sequence, €, when Pig_Out() begins execution.
Each time Pig_Out() invokes a hook method, we add an element to record this
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hook method invocation. This element contains the name of the hook method
called, the values of the member variables of the Eater class at the time of the call,
their values at the time of the return from this call, the values of any additional
arguments at the time of the call, their values at the time of the return, and the
value of any additional result returned by the call. The grey-box post-condition
gives us information about the value of 7 when the method finishes, hence about
the hook method calls it made during its execution. Thus (5.1) states that ||,
the length of, i.e. the number of elements in, 7 is 2; that the hook method called
in the first call, recorded in the first element 7[1] of the trace, is Eat_Donuts;
that the argument value passed in this call is 2; the hook method called in the
second call is Eat_Burgers; and the argument passed in this call is 2.

pre.PigOut() = 7=¢ (5.1)
post.Pig Out() = cals_Eaten = cals_Eaten’ + 1200 A |7| = 2

A T[1].method = "Eat_Donuts” A 7[1].arg = 2

A T[2].method = “Eat_Burgers" A 7[2].arg = 2

Fig. 5. Grey-box specification for Pig_Out in Eater.

It should be noted that (5.1) does not give us additional information about
the value that cals_Eaten had at the time of either call or return. While this
simplifies the specification, it also means that redefinitions of the hook methods
that depend on the value of cals_Eaten cannot be reasoned about given (5.1).
This is a tradeoff that we have to make when writing grey-box specifications;
include full information, resulting in a fairly complex specification; or leave out
some of the information, foreclosing the possibility of some enrichments (or at
least of reasoning about such enrichments, which amounts to the same thing in
the absence of access to the source code of the template method).

Given this grey-box specification, what can we conclude about the behavior of
Pig_Out() in the derived class? Note first that from (4.1) and (4.2), we can deduce
that Eater_Jogger.Eat_Donuts() and Eater_Jogger.Eat_Burgers() satisfy (2.1) and
(2.2), i.e., they satisty the requirement of behavioral subtyping; hence Pig_Out()
will satisfy (2.3) when invoked on Eater_Jogger objects. But we can also conclude
given (2.1) and (2.2) and, as specified by (5.1), that Pig_Out() will make two hook
method calls during its execution, first to Eat_Donuts() with argument value 2,
and then to Eat_Burgers() with argument value 2, that in Eater_Jogger, Pig_Out()
will increment cals_Burned by 40, as specified in Fig. 6.

In [22], we have proposed a set of rules that can be used in the usual fashion
of axiomatic semantics to show: first, that the body of Pig_Out() defined in Fig.
1 satisfies the grey-box specification (5.1); and second, by using the enrichment
rule to “plug-in” the richer behavior specified in (4.1) and (4.2) for the redefined
hook methods into (5.1), that in the derived class, the template method will
satisfy the richer specification (6.1). Here our goal is to test the template method
to see whether it satisfies its specification, so we now turn to that.



