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Preface to the Series
Perspectives in Mathematical Logic

(Edited by the Q-group for ““Mathematische Logik™ of the
Heidelberger Akademie der Wissenschaften)

On Perspectives. Mathematical logic arose from a concern with the nature and the

limits of rational or mathematical thought, and from a desire to systematise the modes

of its expression. The pioneering investigations were diverse and largely autonomous.

As time passed, and more particularly since the mid-fifties, interconnections be-

tween different lines of research and links with other branches of mathematics

proliferated. The subject is now both rich and varied. It is the aim of the series to

provide, as it were, maps or guides to this complex terrain. We shall not aim at

encyclopaedic coverage ; nor do we wish 1o prescribe, like Euclid, a definitive version of
the elements of the subject. We are not committed 10 any particular philosophical
programme. Nevertheless we have tried by critical discussion to ensure that each book

represents a coherent line of thought ; and that, by developing certain themes, it will be
of greater interest than a mere assemblage of results and techniques.

~ The books' in the series differ in level: some are introductory, some highly

specialised. They also differ in scope: some offer a wide view of an area, others present
-a single line of thought. Each book is, at its own level, reasonably self-contained.

Although no book depends on another as prerequisite, we have encouraged authors to

[it their book in with other planned volumes. sometimes deliberatel 'y seeking coverage

of the same material from different points of view. We have tried to attain a reasonable
degree of uniformity of notation and arrangement. However, the books in the series

are written by individual authors, not by the group. Plans Jfor books are discussed and,
argued about at length. Later, encouragement is given and revisions suggested. But it

is the authors who do the work ; if, as we hope, the series proves of value, the credit will
be theirs.

History of the Q-Group. During 1968 the idea of an integrated series of monographs
on mathematical logic was first mooted. Various discussions led to a meeting at
Oberwolfach in the spring of 1969. Here the Jounding members of the group (R. O.
Gandy, A. Levy; G. H. Miiller, G. E. Sacks, D. S. Scott) discussed the project-in
earnest and decided to yo aheud with it. Professor F. K. Schmidt and Professor Hans
Hermeés gave us encouragement and support. Later Hans Hermes Jjoined the group. To
begin with all was fluid. How ambitious should we te? Should we write the books
ourselves? How long would it take? Plans for authorless books were promoted,
savaged and scrapped. Gradually there emerged a form and a method. At the end of an
infinite discussion we found our name, and that of the series. We established our centre
in Heidelberg. We agreed to meet twice a year together with authors, consultants and
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assistants, generally in Oberwolfach. We soon found the value of collaboration: on the
one hand the permanence of the founding group gave coherence to the over-all plans;
on the other hand the stimulus of new contributors kept the project alive and flexible.
Above all, we found how intensive discussion could modify the authors’ ideas and our
own. Often the battle ended with a detailed plan for a better book which the author was
_ keen to write and which would indeed contribute a perspective.

Oberwolfach, September 1975

Acknowledgements. In starting our enterprise we essentially were relying on the
personal confidence and understanding of Professor Martin Barner of the
Mathematisches Forschungsinstitut Oberwolfach, Dr. Klaus Peters of Springer-
Verlag and Dipl.-Ing. Penschuck of the Stiftung Volkswagenwerk. Through the
Stiftung Volkswagenwerk we received a generous grant (1970 — 1 973) as an initial
help which made our existence as a working group possible.

Since 1974 the Heidelberger Akademie der Wissenschaften (Mathematisch-
Naturwissenschaftliche Klasse) has incorporated our enterprise into its general
scientific program. The initiative for this step was taken by the late Professor F. K.
Schmidt, and the former President of the Academy, Professor W. Doerr.

Through all the years, the Academy has supported our research project, especially
our meetings and the continuous work on the Logic Bibliography, in an outstandingly
generous way. We could always rely on their readiness to provide help wherever it was
needed.

Assistance in many various respects was provided by Drs. U. Felgner and K.

Gloede (till 1975) and Drs. D. Schmidt and H. Zeitler (till 1979). Last but not least,
our indefatigable secretary Elfriede Ihrig was and is essential in running our
enterprise.

We thank all those concerned.

R. O. Gandy H. Hermes
A. Levy G. H. Miiller
G. E. Sacks D.aSw.Scoft

Heidelberg, September 1982



Apthor’s Preface

This book is intended to give a fairly comprehensive account of the theory of
constructible sets at an advanced level. The intended reader is a graduate mathe-
matician with some knowledge of mathematical logic. In particular, we assume
familiarity with the notions of formal languages, axiomatic theories in formal
languages, logical deductions in such theories, and the interpretation of languages
* in structures. Practically any introductory text on mathematical logic will supply
the necessary material. We also assume some familiarity with Zermelo-Fraenke.
set theory up to the development or ordinal and cardinal numbers. Any number
of texts would suffice here, for instance Devlin (1979) or Levy (1979).

The book is not intended to provide a complete coverage of the many and

diverse applications of the methods of constructibility theory, rather the theory
itself. Such applications as are given are there to motivate and to exemplify the
theory. .
The book is divided into two parts. Part A (“Elementary Theory”) deals with
the classical definition of the L,-hierarchy of constructible sets. With some prun-
ing, this part could be used as the basis of a graduate course on constructibility
theory. Part B (“Advanced Theory”) deals with the J,-hierarchy and the Jensen
“fine-structure theory”.

Chapter I is basic to the entire book. The first seven or eight sections of this
chapter should be familiar to the reader, and they'are included primarily for
completeness, and to fix the notation for the rest of the book. Sections 9 through
11 may well be new to the reader, and are fundamental to the entire development.
Thus a typical lecture course based on the book would essentially commence with
section 9 of Chapter 1. After Chapter II, where the basic development of construc-
tibility theory is given, the remaining chapters of Part A are largely independent,
though it would be most unnatural to cover Chapter IV without first looking at
Chapter I11. Likewise, in Part B, after the initial chapter (Chapter VI) there is a
large degree of independence between the chapters. (Indeed, given suitable intro-
duction by an instructor, Chapter IX could be read directly after Chapter IV.)

Constructibility theory is plagued with a large number of extremely detailed
~ and potentially tedious arguments, involving such matters as investigating the
exact logical complexity of various notions of set theory. In order to try to strike
a balance between the need to have a readable book of reasonable length, and the,
requirements of a beginning student of the field, as our development proceeds we
give progressively less detailed arguments, relying instead upon the developing
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ahility of the reader to f{il! in any necessary details. Thus the experienced reader
mav well find that it is necessary to skip over sbome of the earlier proofs, whilst the
nevice will increasingly need to spend time supplying various details. This is
perticularty trie of Chapter Il and the latter parts of Chapter 1 upon which
Chanter 11 depends.

As this is intended as an advanced reference text. we have not provided an
cxtensive seiection of exercises. Those that are given consist largely of extensions
or enlar _ments of the main development. Together with filling in various details
in our 1 _count, these should suffice for a full understanding of the main material,
whici is their only purpose. The exercises occur at the end of each chapter (except
for Chapter 1), with an indication of the stage in the text which must be reached
in order 1o attenipe them. : : :

C hapters arc numbered by Roman numerals and results by normal numerals.
A reference to “11.5” means section 5 of Chapter 11, whilst “V.3.7” would refer io
result 7 in section 3 of Chapter V. The mention of the chapter number would be
supressed within that chapter. The end of a proof is indicated by the symbol L.
I this occurs directly after the statement of a result, it should be understood that
cither the proof of the result is obvious (possiblv in view of earlier remarks) or else -
(according to context) that the proof is a long one that will stretch over several
pages and invol" e various lemmas. During the course of some of the longer proofs,
many different symbols are introduced. In order to help the reader to keep track
of them, at the points where new symbols are defined the symbol concerned
appears in the outer margin of the book.

Finaliy, i would like to express my gratitude to all of those who have helped
me-in the preparation of this book. There are the members of the 2-Group, who
gave me the henefit of their views during the early stages of planning. Gert Miiller
kept a watch{ul eye on matters managerial, and Azriel Levy took on the task of
editor, reading through various versions of the manuscript and making countless
suggestions for improvements. Others who read through all or parts of the final
manuscript are (in order of the number of errors picked up) Stevo Todorcevic,
Klaus Gloede, Jakub Jasinski, Wlodek Bzyl, Martin Lewis, and Dieter Donder.
Not to forget Ronald Jensen. Although he played no pdrt in the writing of this
book, it is clear (or will be if you get far enough into the book) that without his
work there would have been practically nothing to write about!

Financial support during the preparation of the manuscript was provided by
the Heidelberger Akademie der Wissenschaften.

Keith J. Devlin
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Chapter 1
Preliminaries

The fundamental set theory of this book is Zermelo- Fraenkel set theory. In this
chapter we give a brief account of this theory, insofar as we need it. Sections 1
through 5 cover the early development of the theory up to ordinal and cardinal
numbers. The remaining six sections deal with some special topics of direct rele-
vance to the subject matter of this book, and the coverage is therefore a little more
complete than in the previous sections.

1. The Language of Set Theory

The language of set theory, LST, is the first-order language with predictates =
(equality) and € (set membership), logical symbols A (and). = (not), and 3 (there
exists), variables vy, v;,..., and (for convenience) brackets ().

“ The primitive (or atomic) formulcs of LST are strings of the forms

A SRS T (b e )

The formulas of LST are generated from the primitive formulas by means of
the following schemas: if @, ¥ are formulas, so too are the strings

@AY), (P, (Av,9).

(We generally use capital Greek letters to denote formulas of LST.)
The notions of free and bound variables are defined as usual. A sentence isa
formula with no free variables.
~'Wewrite x ¢ yfor— (xe y)and x + y for m(x = v).(Wegenerally use, x, y, z,
etc. to denote arbitrary variables of LST.) ,
u‘\'/m definec 'cajssymb@ls Vs, ¢, V are mtroduced in the usual way, and
. if they re baslc symbols of LST (i.e. hdving the same
statusag Dse ; .,mfar tﬁe béundedquantmers F v, ev, and Meyev,)
(where m+ n), mtmdueqd by the schemas

—u..m g 1Ol 28 pe

el p‘“@ v P@ _ »pho&’@! ;b,,, ((v,,, € v ) A ¢P)

%

thaidw 2toe(\hps Ev)¢ replams Yo v, ev)—»(b)



4 1. Preliminaries
The symbols < and 3! are defined thus:

ycz abbreviates (Vx € y)(x € z);

J!x® abbreviates Iy Vx(y = x— D).
(Thus 3! x® means “there is a unique x such that @”.) We also write
ycz tomean ySzAyFz.

The above abbreviations are never regarded as a fundamental part of the language
LST, however, unlike the bounded quantifiers, etc.

One final remark. In writing formulas, we strive for legibility at the expense of
strict adherence to the syntax of LST. This particularly applies to our use of
parentheses, which are omitted wherever possible. Also, when nesting of clauses
is required, we sometimes use both (square) brackets as well as parentheses, for
clarity. Out notation for the interpretation of variables in formulas is also chosen
with clarity in mind. If we write, say, @ (v;, v;), we mean that the free variables of
& are amongst the variables v,, v;. If we subsequntly write @ (x, y), where x and
y are specific sets, we mean that @ is a valid assertion when x interprets v; and y
interprets v;. (Of course, we have also decided to nse x, y, z, etc. to denote arbitrary
variables of LST. But in any given case, the context should indicate the intended
meaning.’

2. The Zermelo-Fraenkel Axioms

The theory ZF is the LST theory whose axioms are the usual axioms for first-
order logic (for the langugage LST), together with the following axioms (i)—(vii):

(i) Extensionality: VxVy[Vz(zexezey) = (x =y)]

(ii) Union: Yx3yVz[zey—(Quex)(zeu)]

(i) Infinity: 3x[3y(yex) A (Vyex)(Izex)(ye2)]

(iv) Power Set: Yx3yVz[zeye zc x]

(v) Foundation: Vx[3y(yex)—>3y(yex A (Vzey) (z¢x)]

(vi) Comprehension (schema):VaVx3yVz[zeyerzex A ®(z,d)],
where @ is any LST formula whose free variables are amongst z, d, and where the
variables d, x, y, z are all distinct. :

(We use %, d, etc. to denote finite strings of variables, V d to abbreviate Va,, ..., Ya,
and ®(z,d) to abbreviate ®(z a;,...,4,). In more complicated situations,

1 Strictly speaking there is no clash of notation here. As far as formal set theory is concerned
there are simply variables (to denote “sets”). But as usual, to avoid incomprehensible use of
quantifiers and formulas to define specific sets, we argue in a loose, semantic fashion whenever
possible, and then it can be useful to distinguish between “formal variables” and “sets which
interpret those variables”.
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we often use expressions such as X, ..., X,. Here, X, will denote some sequence
X00s -+ 45 Xox, X; Will be another sequence X, ..., Xy;, possibly of a different
length, according to context, and so on.)

(vii) Collection (schema):
ValVx3y®(y, x, 6)—>Vu3v(Vxeu)(3yeu)<D(y, x, d)l,

where @ is any LST-formula whose free variables are amongst y, x, d, and where
the variables 4, x, y, u, v are all distinct.

In (iii), the exact formulation of the Axiom of Infinity is not important, and
different texts often give different formulations. The main point is to guarantee the
existence of at least one infinite set. Axiom (vi) (the Comprehension Axiom -
schema) is sometimes referred to as the Subset Selection schema. The German
word Aussonderungsaxiom is also quite common for tlis axiom scheme. In Axiom
(vii) (Collection), notice that we have placed the variable y before the variable x.
This is purely a stylistic convention, of course, and reflects the fact that in our
representation of a furction as a set of ordered pairs, we shall take the first
member of each ordered pair as the value of the function and the second element
as the argument. Axiom schemas (vi) and (vii) are often replaced by a single
schema: the Axiom of Replacement.

Notice that by virtue of the two axiom schemas, the above list of axioms for
ZF is infinite. We shall soon be able to prove that no finite collection of LST
sentences suffices to axiomatise ZF.

By the Axiom of Infinity, there exists at least one set. The Axiom of Compre-
hension then-yields the existence of the empty set §. Many texts include as an
axiom of ZF the Null Set Axiom, which is the assertion that there exists a set
having no elements, viz.:

AxVy(yé¢x).

‘Zermelo-Fraenkel set theory includes one further axiom:

(viii) Axiom of Choice (AC):

Vx[(Yye )y 0 A (yV ex)(y+ ) > Vwweyorwdy)
—(3z)(Vyex)3lvey)(vez)].

We denote Zermelo-Fraenkel set theory (which includes AC) by ZFC. This
nomenclature is now fairly standard, despite the rather unfortunate fact that it
means that the letters ZF do not stand for “Zermelo-Fraenkel” set theory, but just
a part of that theory. To try to avoid any confusion, throughout the ook we shall
stick to the abbreviated notations ZF and ZFC. Hence, we shall have the “equa-
tion”

ZFC = ZF + AC.



6 1 Preylliminaries
ZFCis our basic set theory. On occasions it will be important to note that AC
is not being used in an argument, and in such cases we shall write, for example,

ZF &
or else

d)—PZF(I’

to mean, respectlvely, that @ is provable in ZF or that ¥ is provable from @
together with the axioms of ZF.

: Elementary Theory of ZFC

N\

3.1(Sets and Classes). The basic objects of discussion of ZFC (i.e. the objects over
which the variables range) are called sets. The untverse is the collection of all sets,
and is denoted by V. If @ (v,, vy, ..7, v,) is an LST formula and X (5. Loy X ALE Sets,
the collection of all sets x for Wthh P (x, Xy, ..., x,) is a class, denoted by

{0 | @i iRy Agix;) ¥

Every set, y, is a class (consider the formula @ (x, y) = (x € y)), but not every class
is a set (consider the formula @ (x) = (x ¢ x), which would lead at once to the
Russell paradox if the class it defined were a set). We often write

{xey'ds(x’xla---’xn)} g * f - A ebieres
in place of
{x|xey A B Xoran s )i}

(By the Axiom of Comprehension, this class is always a set.) We generally use
capital Roman letters X, Y, Z etc. to denote classes, with iower case Roman letters
being reserved for sets (as well as for variables of LST, which denote sets, of
course). A class which is not a set is called a proper class. Proper classes do not
fall under the scope of the axioms of ZFC, but their usage is convenient. We
assume the reader is familiar both with the use of proper classes in set theory and
the means by which such usage may be avoided if required. A particular ¢ cxample
occurs in VL1, where we discuss the rudimentary functlons It is convenient,
though avoidable, to develop the relevant theory in terms'of “functions” defined
or the whole of V, even though, as proper clasees these cannot be functmm in the
sense of set theory at all.

Our set-theoretic’ notation is standard. The ‘set conslstmg of pracndy the
elements x;,... X, is denoted by

‘.\’1..»<.’<\',‘};



: on of x, and {x, y} is the unordered pair of x, y. Many texts include
ZF the Pairing Axiom, whlch asserts that for every pair of elements

: {x,y}exxsts,xe Lo a0 ]

Q/x Vyi!z Vu(ueze—m =£x v w-—*‘: y)
ever, as this “axiom” is eas11y proved from the axioms we hstedxem?her we dzt&
take it as a basic axiom.

The ordered pair of x and y is defined by

SO R
énd has the property that

{8

(x,y) : (X', y) 1ffx*x and y= y- _
Tﬁe union of x (i.e. the set of all members of all members of x) is denoted by U A
and is guaranteed to exrst’ by the Union Aanm We wrlte XUy 1nstead of () {x, y}.
The mterseciwn of x, (), is defined by

'ye'ﬂx' lff(Vzex)(yez) . “ : _’ : \

and is a set whenever x # 0. (By our definition, ﬂ ¢ = V,but thxs is not a case that
will ever concern us.) We write x N y for N x5y} “The d;ffereuce of x and y is
#ﬁned b y 'S 524 2

. X~y —{zexlzéy}

e power set of x (1e the set of all subsets of x) is denoted by L(x), and is
Tﬁranteed to exist by the ’Power SettAxiom. . i v : ek nad

e f‘ té“J

Wnﬁk} AclassM is sald to- be_tran,smve 1f das p
IR 5105t vilsuen : P B o
xeweM—oxeM sk 51 an 31 224

g s
0 3



8 ; I. Preliminaries
If o, B are ordinals, either « = f# or a € B or B € a. So the class
On = {x|On(x)}

is totally ordered by €. We often write a < f instead of « € f, and « < f instead
of (@ < f v a = f). It is easily seen that « < f is equivalent to & < . Moreover,
for any ordinal «,

a={B|B <a}.

By the Axiom of Foundation, the relation < is in fact a well-ordering of On (i.e.
every non-empty subset of On has a <-least element).

If A is a set of ordinals, then U A is also an ordinal. In fact, U A4 is the least
ordinal é such that (V o € 4)(x < 9). This least ¢ is also called the supremum of A,
denoted by sup (A4). Thus sup (4) and U 4 coincide.

The first ordinal (under the canonical well-ordering €) is the null set, §, but
when considered as an ordinal it is usually denoted by 0. The next ordinal is the
set {0}, denoted by 1. Then comes the ordinal {0, 1}, denoted by 2, followed by
3 = {0, 1, 2}, and so on. If « is an ordinal, so too is & U {a}, and there is no ordinal
y strictly between a and a U {a}. We call « U {a} the successor of «, denoted by
o + 1. Any ordinal of the form o + 1 is called a successor ordinal. An ordinal o is
a successor ordinal iff succ («), where succ (v,) is the LST-formula

On (vg) A (v, €v9) (Y, €00)(v2 €0, V ¥, =1y).

A non-zero ordinal which is not a successor ordinal is called a limit ordinal. If
lim (v,) is the LST-formula

On (vg) A (v, € Vo) (vy = vy) A (Y0, € 10)(Fv; € 1p) (v € 1),

then an ordinal o will be a limit ordinal iff lim («). Using thé Axiom of Infinity,
together with other ZF axioms, it can be shown that a limit ordinal exists. The
least limit ordinal is denoted by w. The elements of the set w are precisely the finite
ordinal numbers, and are called the natural numbers. We usually denote natural
numbers by m, n, i, j, k, etc. Notice that w is definable by the formula

lim (vy) A (V v, € vg)(succ(vy) v (Yo, € v,)(v; F 03)).
We usually write 3¢ ® («) in place o.f :
v, [On(vg) A D (vy)],
and YV« @ (a) in place of
V0 [On (vo) - @ (o) ]-

If (X, <) is a well-ordered set, there is a unique ordinal number « such that
(X, <) is isomorphic to a (with the usual ordering). This « is called the order-type
of (X, <), denoted by otp (X, <).



