Peter C.Sanderson
Introduction to
Microcomputer
Programming

0P 5% . TS L

22)

Introduction to
Microcomputer
Programming

PETER C. SANDERSON. va

Senior Advisory Officer (Computers),
Local Authorities Management
Services and Computer Committee

I

I

E8051071

F

NEWNES TECHNICAL BOOKS

The Butterworth Group

United Kingdom Butterworth & Co (Publishers) Ltd
London: 88 Kingsway, WC2B 6AB

Australia Butterworths Pty Ltd
Sydney: 586 Pacific Highway, Chatswood, NSW 2067
Also at Melbourne, Brisbane, Adelaide and Perth

Canada Butterworth & Co (Canada) Ltd
Toronto: 2265 Midland Avenue, Scarborough, Ontario
M1P 4S1

New Zealand Butterworths of New Zealand Ltd
Wellington: T & W Young Building,
77—85 Customhouse Quay, 1, CPO Box 472

South Africa Butterworths of New Zealand Ltd
Durban: 152—154 Gale Street

USA Butterworth (Publishers) Inc
Boston: 10 Tower Office Park, Woburn, Mass. 01801

First published 1980 by Newnes Technical Books,
a Butterworth imprint

© Butterworth & Co (Publishers) Ltd, 1980

All rights reserved. No part of this publication may be reproduced or transmitted
in any form or by any means, including photocopying and recording, without

the written permission of the copyright holder, application for which should be
addressed to the Publishers. Such written permission must also be obtained before
any part of this publication is stored in a retrieval system of any nature.

This book is sold subject to the Standard Conditions of Sale of Net Books and
may not be re-sold in the UK below the net price given by the Publishers in their
current price list.

British Library Cataloguing in Publication Data

Sanderson, Peter Crawshaw
Introduction to microcomputer programming.
1. Minicomputers — Programming
1. Title
001.6'42 QA76.6 79-42861

ISBN 0-408-00415-0

Typeset by Butterworths Litho Preparation Department
Printed in England by Fakenham Press Ltd.,
Fakenham, Norfolk

Preface

The development of microprocessor-based computer systems has
demolished the price barrier that hitherto inhibited computer usage.
The use of a computer system is now feasible for a wide range of new
users, especially small businesses, teachers and hobbyists. Yet, although
systems are cheap, they are useless without programs. Commissioning a
special program for individual use is expensive; a suite of business
programs is likely to be more costly than the microcomputer system
itself. On the other hand, using a ‘package’ program confines the user
within the straitjacket created by the concepts of the program supplier.
Many applications for businessman and hobbyist alike are so individual
that a package solution would be inappropriate and inadequate. Sooner
or later, most users of microcomputer systems will have to consider
writing some of their own programs if they are to obtain all the benefits
they desire from their system.

This book is a simple introduction to programming for users of
microcomputers, whether commercial users, domestic hobbyists or
teachers. A slight acquaintance with the functions of a computer is
assumed, but no advanced mathematical knowledge or familiarity with
the detailed electronic construction or workings of microcomputer
systems is at all essential for an understanding of the text. No previous
knowledge of programming is necessary. The book is essentially a
practical guide to programming and a manual of self-instruction. The
examples are chosen from familiar fields, and it is intended that these
examples and the exercises will be presented to the reader’s microcom-
puter system. Suggested solutions are provided for the exercises.

The sections on the Basic language stress the features that form a
common core and are found in the great majority of microcomputer
implementations. Chapter 7 is devoted to some of the common variations
of Basic found in microcomputer configurations. The chapters on
assembly language and machine code deal with the features of the four
most commonly used microprocessor chips. Since there is a great deal
more to programming than the mere coding of language statements, an

initial chapter is devoted to pre~coding activities and the final chapter
to program development and: testing.

I would ‘like to express my thanks to all the manufacturers and
suppliers who provided material about their versions of Basic for
Chapter 7. I would like also to mention Anne Patricia, whose life was
so tragically cut short in October 1978, and whose efforts on Kim 1
gave me the original idea of writing the book, which grew out of our
many conversations on microcomputer programming. In a sense, this
work is a memorial to her.

I would like to record my deepest gratitude to Kathlyn Bell for her
expert typing assistance, tomy daughter Julia, who provided an impetus
when inspiration flagged, and to the staff of the publishers for their
help and guidance.

Peter C. Sanderson

8061071

Contents

1 Introduction to computer programming 1

2 Choosing a computer programming language 20
3 Introduction to Basic 29

4 Repeating operations in Basic 46

5 Loops, lists and subroutines in Basic 54

6 Some additional Basic facilities 67

7 Variants of Basic 76

8 Introduction to assembly-language and machine-code
programming 84

9 Further assembly-language and machine-code facilities 98
10 Program development and testing 115
Glossary 123
Suggested solutions to exercises 126

Index 137

8061071

P> asamumb
e v “

- H 4\)4 ‘i,"
"‘\ i. A fo "
» < S

Introduction to ¢
programming

A computer system that you cannot program has been compared to a
tool without a handle. If you have spent many hours in assembling and
testing your own kit, or have become the proud possessor of a readymade
system, you will sooner or later wish to write your own programs.

A program is a series of instructions that enable a computer to perform
the task you wish it to do, whether displaying football pool permutations
or calculating future loan repayments. It is written in a language intel-
ligible to the computer system. When you write computer programs, you
have to be familiar with the particular programming code (or language)
in which you are working. This has some resemblance to the activities
of knitting or map reading, where you have to familiarise yourself with
the code in which knitting patterns are expressed or the code of the
conventional map symbols and contour colours.

The word ‘program’ is the first of the many technical terms that will
be used in this book. Some element of jargon is unfortunately inevitable
in a work about computers. In this chapter unfamiliar terms are italicised
when they are introduced, and are then defined. At the end of the book
there is an alphabetical glossary of the special terms that you will meet
in this book and may encounter elsewhere in your reading about
computers.

If you are using your microcomputer system as a student, you will
almost certainly need to write your own programs. If you are a hobbyist,
you will sooner or later find that the readymade or ‘package’ programs
supplied by the microcomputer system manufacturer or taken from
computer magazines will fail to meet your individual needs. Domestic
diaries and budgetary systems vary from household to household, so
standardised programs are unlikely to meet individual requirements. If
you are using a microcomputer system for control of some external
device you are not likely to find an exact, tailor-made system to connect
to your equipment for synthesising music or controlling central heating
or a model railway system. The computer games that you can buy

1

2 Introduction to computer programming

ready-programmed may pall, and sooner or later you may wish to
introduce your own variations into them or to design some game of
your own invention, for which you will have to compose the necessary
programs.

Programming a microcomputer system is essentially the same task as
programming a conventional large computer (these are usually called
mainframes) or the medium-sized computers known as minicomputers.
Indeed, if you use certain programming languages for your micro-
computer, you will find that your programs will be able to run on
a conventional mainframe such as an IBM 370/158. Certainly the
preparatory work before writing down the statements in the appropriate
programming language is common to all types and sizes of computer
system.

All computers follow slavishly the instructions in the program. They
are not telepathic and cannot tell if you have omitted an instruction
because, to the human mind, it seemed too obvious. If you forget to
instruct some computers to halt or stop at the end of the program, or
forget to ensure that you do not give an instruction to perform division
when one of the numbers involved may be zero, you will have a non-
sensical answer displayed or printed. When writing computer programs,
you have to abandon all human intellectual pretensions and look at
instructions at the level of the machine! All instructionsin your program
will be meticulously obeyed, but the computer will make no attempt to
discover whether they are sensible or comprehensive.

Thus programming can be frustrating and demands close attention to
detail. Yet it is not insufferably difficult; no more so than learning to
play simple tunes from conventional musical notation on a piano or
recorder. Highly successful computer programmers have sprung from
the most unlikely non-mathematical backgrounds. The rapidly growing
number of computer hobbyists shows that there is nothing fundamentally
formidable in writing programs and that it can add challenge and
exhilaration to your hobby.

The most important rule in designing successful programs is to avoid
rushing into writing the actual programming language instructions until
a great deal of preparatory work, which will be described in the rest of
this chapter, has been done. There is a fundamental distinction between
writing the actual instructions (known in the computer world as coding)
and the real work of program design. Except for the simplest programs,
coding is less than a quarter of the work involved. As in decorating a
house or a room, the more time spent in preparation, the better, more
elegant and longer-lasting is the result. As paintwork on uncleaned or
unprimed woodwork soon needs renewal, so hastily coded programs
soon need rewriting or drastic alteration. In fact there is a pronounced
likelihood that they will not even run.

Introduction to computer programming 3

There are five main steps in preparing a program, prior to entering it
on the keyboard or switches of the microcomputer system in the
appropriate code or computer language.

1. Ascertain whether the problem is feasible for solution on your
microcomputer system.

. Define the problem precisely.

. Consider possible methods of solution.

. Break down the problem into small steps suitable for representation
in programming language statements or instructions, and express
these in visual form. (This is known as flowcharting and- will be
defined in greater detail in the course of this chapter.)

5. Document the statements so that it will be easy to operate the

program from this documentation, which will also assist when you
wish to extend, or make alterations in, the original system.

S W

These steps will be described in detail in the rest of this chapter.

Ascertaining the feasibility of your problem

Most problems are capable of being solved on a computer system if
they can be expressed in a logical series of finite steps. In theory, any
problem that contains no irrational or intuitive elements can be pro-
grammed for solution on a computer, although in some cases the
program would be too complex to write in a reasonable amount of
time. You can design a program to analyse past form to predict the
winner of a football game or a horse race, but you cannot blame either
the program or the microcomputer if they fail to select the actual
winner, since elements that defy logic are invariably involved in sporting
competitions.

Some problems, which in theory can be solved by a computer, will
be incapable of being solved on the particular equipment you possess,
or can only be solved with a great deal of difficulty. If your system
does not have a typewriter keyboard, it is best to avoid applications
where you have to enter letters of the alphabet, and of course elaborate
graphical displays are not possible if you only have an LED display. If
you wish to use a large file of data in your program, it may be very
time-consuming and cumbrous to have to change many cassettes of
tape during the operation of the program.

You may find you have a program too large for the store or memory
of your equipment. You will easily be able to find out the store size
from the manual that accompanies a readymade system, and if you
have built your own system you will know exactly how much store you
have attached to it. You will soon become adept at estimating the size

4 Introduction to computer programming

of a program in the early stages of design. You can then decide whether
the problem should be abandoned (or left until more store is purchased)
or whether it can be conveniently broken down into a series of smaller
problems, so that you can enter results produced by one program into
the next program in the sequence.

In the spirit of a fledgeling pianist attempting a Brahms sonata, you
may decide that, although a projected program would be feasible, it
would be too difficult until you have gained more experience. This
difficulty should not cause you to think of yourself as a coward or a
slow learner. It has been estimated in the USA that a standard output
of correct machine code (the most difficult form of computer language,
which will be fully explained in the next chapter) for a programmer is
ten instructions daily. Therefore you may not be able to spare the time
to program a complex problem.

If you are a small business user of microcomputers you will probably
also consider the cost savings and potential benefits of introducing a
specific microcomputer-based system before embarking upon the
programming. Such considerations will also determine which projects
are programmed first.

Definition of the problem to be programmed

The easiest problems to define for solution by programming a micro-
computer are numerical. There are many published algorithms (rules of
a procedure for solving a specific problem, often applied to rules
expressed in a computer language) for numerical problems, which may
need only slight alteration for your microcomputer system. Whether
you use these or whether you completely design your own program,
you should ensure that:

® care is taken if any number or intermediate result is likely to be zero
or negative;

® no number or intermediate result is likely to become too large or
small for your system (the processor manual will provide the range of
numbers that can be represented);

® you can obtain the accuracy to the number of decimal digits you
want;

® you are inserting satisfactory checks on numbers you insert from the
keyboard or switches: ‘finger-trouble’ can easily occur, and is not always
easy to detect at the moment when a wrong insertion is made.

If you are programming a problem where you are working with
interrupt signals from outside the microcomputer, such as from a model-
train layout, you should make sure that in the program definition the

Introduction to computer programming 5

precise timing requirements are defined. You will also have to think
carefully about what you are going to insert in the program for unusual
and error conditions.

Domestic programs need to be as precisely defined as mathematical
problems. You must try to visualise the various ways in which your
family will enter certain items from the keyboard. If you are working
on a calendar or diary application, for instance, you will have to decide
whether you will accept 11 June, 11 Je, 11.6 as being equally acceptable
entries, and whether you will accept numeric ‘0’ and alphabetic ‘O’ as
being interchangeable. The insertion of checks on keyboard data can
be overdone, but it is as well to cater for major variants in the early
stages of system design.

In both domestic and business programs you are likely to be involved
in the processing of a cassette tape file against information entered
from the keyboard. A typical example of this type of application would
be the reconciliation of credits and debits that you have entered on
cassette tape with entries from a monthly bank statement that are being
entered, item by item, from the keyboard. You will have to program
for appropriate action to be taken for unmatched items, which will be
indicated by reaching the end of the file when there are still items to be
entered on the keyboard or by completing the entry of keyboard items
before reaching the end of the file. If your expenditure and income
entries are on more than one cassette, you will have to program to
display a message to insert another cassette. In this type of program
you will have to be liberal in displaying or printing messages for the
guidance of data entry through the keyboard and for explaining unusual
or error conditions to the person operating the microcomputer system.
In all programs, you should avoid displaying a result as a string of digits
if your microcomputer system can print or display explanatory headings
and text with the figures.

Flowcharting

When you have defined the problem, you will have to consider methods
for solution and ultimately select one of these methods. You will then
have to break the method down gradually into small steps; eventually
each step will be equivalent to a single program statement in the language
you are using. To a certain extent, the processes of selecting a method
and decomposing it into program statements are complementary, since
often a detailed examination of a method originally selected will prove
its unsuitability. Then it is necessary to start again with the consideration
of an alternative method for solving the problem that you have previously
defined.

6 Introduction to computer programming

A flowchart has been previously defined as an expression of program
steps in a visual form. Invariably you do not leap into writing the
detailed program steps, but start with the broad stages in solving the
problem. We can therefore extend our definition of a flowchart to
include a visual representation of the stages of the process to solve a
particular problem on a computer.

The expression of the steps or procedure for solving a problem in
visual form is a valuable aid to programming. When a formula is written
down, or a series of instructions (like a recipe) is studied, it is difficult
to realise that they are an expression of a number of discrete steps that
follow one another in time, because we tend to see the formula or
instructions as a whole. However, the computer only obeys one instruc-
tion at a time, so a flowchart is ideal for the representation of steps in a
computer program since it illustrates the flow of steps in time sequence.
A flowchart often makes the subsequent steps to an operation in solving
a specific problem more obvious and assists in avoiding repetition of
steps. It is easier to alter a flowchart than detailed computer language
statements in a program, especially for the beginner.

Flowcharts are by no means confined to computer programming.
They are used in a growing variety of applications including mechanical
assembly, chemical production and fault-finding in machinery. A set of
flowcharts for non-computer procedures has been published for general
use in British local government.

The shapes of the ‘boxes’ in which the steps of a flowchart are
written have been standardised in BS 4058. Only the two chief symbols
will be used in this book, as it is perfectly feasible for an amateur
programmer to manage by using only these two. They are:

for a process or a calculation

for a decision (e.g. is a number zero?);it has two
exits, ‘yes’ and ‘no’

The use of these symbols is shown in a simple flowchart for the game
of Snakes and Ladders (Figure 1.1). This example illustrates several
important features in the construction of flowcharts:

1. Boxes are provided for ‘start’ and ‘stop’.

2. The amount of detail in a step is entirely up to you. In this diagram,
we have included both landing on a ‘snake’ and landing on a ‘ladder’
in one box (I).

Start

Score = 0

[

Wait your
next turn

Shake die

Shake die

|

Add value
to score

ubtract last N
throw from score)

Stop

Move to
square of score

Move to
indicated square

Wait your
next turn

|

Figure 1.1 Flowchart for Snakes and Ladders

8 Introduction to computer programming

3. There is rarely a single correct solution for a specific flowchart or
program. You may doubtless be able to find a different, but equally
valid, solution to the snakes and ladders problem. For instance, in
box G you could make the test ‘<100?” and make the ‘yes’ exit to
this the main path of the program.

4. The diagram shows the complexity of a problem that at first sight
seems trivial. It also shows the importance of putting the decision-
boxes in their correct order so that you can avoid writing identical
steps in many different branches of the flowchart or program and
(hopefully) avoid any combinations of events where the wrong action
is taken.

You may by now be convinced that time spent in planning a program in
the flowchart stage will save time and confusion when you are entering
the program on the keyboard or switches of your microcomputer
system.

Usually you initially flowchart the problem in outline, and then
produce successive detailed breakdowns of it until you approach the
detailed individual statements of the programming language in which

Start -

Read and B
sum weights

4

Compute and |C
print average

Figure 1.2 Outline flowchart for
D averaging weights

Stop

you are writing. A problem to read-in your monthly weight twelve
times and display or print the average over the year is flowcharted in
broad outline in Figure 1.2. This represents the way in which humans
would solve the problem. When you commence breaking it down into
more detailed steps for programming you will get closer to solving the
problem as the computer would see the instructions to solve it.

You usually have a method of reference from one level of flowchart
to another, so that you can more easily understand the detailed levels —

Introduction to computer programming 9

perhaps some months after the program has been written — by referring
back to the broad outline. Often the first-level boxes are A, B, C etc.
Then at the second level the boxes referring to A start at Al and can -
go up to A9; at the third level they can go from A10 to A99 (Al
expanding to A10—A19, A2 expanding to A20—A29, etc.); at the fourth
level from A100 to A999 (A100—A109, A110—A119, etc.) — and so
on, asnecessary. It is convenient to limit the number of substeps relating
to a specific step at the previous level of detail to ten.

The above numbering convention is used in the more detailed break-
down of the weights problem (Figure 1.3). The flowchart has been
expanded to include the display of a title and of a message indicating
that all weights have been entered. This flowchart introduces the
important concept of aloop, i.e. a section of program that you want to
repeat many times but only write once. All box B of the broad-outline
flowchart (boxes B1—B5 of the more detailed one) is the loop here.
This type of loop is a very common technique in programming when
you know the exact number of items you wish to process. The loop is
controlled by a count, which is (usually) set to zero before the loop is
entered. When you have come to the end of the processes you wish to
perform on an item of the loop, one is added to the count, which is
tested against the number of times you wish the loop to be obeyed. If
the count is less, the loop is repeated again.

To illustrate the loop in the weights problem, we will reduce the
number of weights entered to three (if it works with three it will work
with 12, or any number you wish) and observe various totals. This
method of checking a flowchart with a very small number of items is a
very suitable technique in estimating how correct your program design
really is.

Count Total Weight entered Total Count Result of
at B1 at Bl (kg) at B3 at B4 BS test

0 0 61 61 1 Yes

1 61 63 124 2 Yes

2 124 64 188 3 No

Sometimes the number of times you wish a loop to be obeyed varies
each time you run the program, so that you cannot use a count against
a fixed number. The usual way of catering for this type of problem is
to enter, at the end of the data, a number (called a ‘sentinel’) that
cannot possibly occur in valid entries. An appropriate one for the
weight problem would be O or —1, which even the most dedicated
weight-watcher could hardly hope to achieve. The sentinel technique
is very useful and more flexible than using a count against a fixed
number. You must, however, ensure that the sentinel value (which

10

Start Al
Print title | A2
(
Clear count | A3
and total
Print B1
‘ENTER A WEIGHT"]
Input weight | B2
\ h
Add weight | B3
to total
Add 1 to count o

Print “ALL
WEIGHTS ENTERED’

c1

(

Compute and
print average

Y

Stop

C2

D1

Figure 1.3 More detailed flowchart for averaging 12 weights

Introduction to computer programming

Start .

Clear total |
and count

4

Enter item |C

D
Yes (i.e. sentinel)

No A

Average = G Add item E
total/count to total

y

i H Add 1t t|F

Print average 0 coun

y

Stop

Figure 1.4 Flowchart of ‘sentinel’ loop technique

could be —1) is tested before each data entry is added to the total.
Otherwise the sentinel itself would be added to the total.

The flowchart in Figure 1.4 illustrates a solution of the problem to
calculate the average of a variable number of items ended by a sentinel.
The loop is tested below for data entries of 70, 74 and O (sentinel)

Item

70
74
0

Test at D Total at F Count after F
No 70 1

No 144 2

Yes

The previous flowcharts have obliterated each data entry as soon as
the next one is read. Often you wish to store each entry for use in a

11

