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GENERALIZED CLASSICAL MECHANICS AND PIELD THEORY

FOREWORD

The aim of this book is to build up a large panel of
the present situation of Lagrangian and Hamiltonian formaligm}
involving higher order derivatives. The achievements of Dif-
ferential Geometry in formulating a more modern and powerful
treatment of these theories are developed’ including the con-
tributions of thes author's themselves. An extensive review of
the development of these theories £R§§13§5i0a1 language is also
given, h

A’ Lagrangian formalism is said to be of higher order
derivatives if it is described by a real (smooth) function L
which debends on n-independent variables X, m-fuictions
YA(xa) and all derivatives of the y 's with respect to the
x's up to a certain finite order k. For sake of simplicity,
we will say that L is a Lagrangian of order k. In Particle
Mechanics and Field Theories one usually works with Lagrangians
of order one. Therefore, higher order Particle Mechanics(resp.
Field Theories) means that the Lagrangians depend not only on
position/velocity variables (resp. independent coordinates/
field variables) but also on their time derivatives up to k-th
" order (resp. partial derivatives up to k-th order of the field
;ariables with respect to the independent coordinates).

Higher order Hamiltonian formalisms will understand, as
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in the standard theory of order one, the Hamiltonian counter-
part of such Lagrangians.

There is not much agreement in the literature as to the
interest in this kind of problem. It seems to have started
with M. Ostrogradskf in 1848 (see Whittaker (1959)). Accord-
ing to P. Dadecker (1979), it was J. Jacobi who first studied
these systems. Also Todhunter, in his book "History of the
Calculus of Variations", mentions that Clebsch, following a

suggestion of Jacobi, considered this subject in 1858, There=

fore, we may call such theory Jacobi-Ostrogradsky Generalized

Classical Mechanics (and Field Theory) or, more simply, Gene-

neralized Classical Mechanics (and Field Theory).

In the last 40 years many papers dealing with higher
N
derivatives in Mechanics and Field Theories have appeaved. It
seems that it was F. Bopp (1940) and B. Podolsky (1942) who
renewea the interest in this kind of generalization in physics,
Podolsky (and co-workers), for example, introduced an electro-
magnetic theory with second order derivatives.

Mechanics lays naturally in Differential Geometry and
reciprocally. This "mavrriage" has allowed not only a more ri-
gorous formulation from the mathematic;l point of view, but
also a better understanding of its physical content. Following
the results in Symplectic Mechanics systematized in the litera-
ture (see the "Bibles": Abraham & Marsden (1978), Arnoltd (1974)
and Godbillon (1969)) it is found that a Lagrangian, resp.
Hamiltonian, formalism can be characterized by geometric struc-

tures canonically associated to the tangent, resp. cotangent,

bundle of a given differentiable manifold (they are respective-
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ly, the velocity, phase and configuration spacés)..Analytical
Mechanics is developed through geometric formalisms underlying
the theory of fiber bundles.

<These iasf years a certain number of papers:ﬁhere the
geometrical formulation of this so-called Generalinod Mechanics
and Field }heory'is developed have been published. Inspirved
by them, the major task of the present work will be to give an
overview of the results obtained in the elﬁboration of this
formalism, including our own results on the subject. The "na-
tural place" of our study will be thé'fgt bundles, first in-
troduced bfiCh. Ehresmann in the years of 1950, For instance,

~in Lagrangian-Particle Mechanics we develop the formalism on
tangent bundles of higher order. We will emphasize some %eo-
metric structures underlying such a Mechanics in the sense that
they are a generalization of the methods msually employed in
the standard situation. )

The text is divised in three chapters, each of them
with an introduction. In the first we éive some geometric
tools necessary for the development of the others two chapters.
In Chapter II we adopt the point of view of J. Klein (1962)
for Lagrangian Mechanical Systems., Klein's Lagrangian forma-
lism is developed with the help of the Almost Tangent Geometry
(introduced by Clark & Bruckheimer in 1960) and a special ex-
terior differéntial calculus, We'ex:end this geomédtry to
higher order tangent bundles. One advantage of such a choice
is that it is possible to give an intrinsical exposition with-

out carrying the symplectic form of the cotangeun® bundle, as

we asually do for the standard regular Lagrangians. Therefore,
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‘we work, gemerically, with pre-symplectic structures in the
‘place of symplectic omes. The third chapter is devoted to a
local and sometimes global study of Generalized Classical
Field Theory‘from the variational approach. The geometric
férmalism'adoptod there is the usual one underlying exterior
differential calculus on manifolds.

This book is addressed mainly to graduate students.,
Of course it is assumed that the readers are acquainted with
the geomeétrical formulation of stan@ard Classical Mechanics.,

We acknowledge the Brazilian Agency.Conselho Nacional
de Desenvolvimento Cientifico e Tecnoldgico (CNPq), Ministé-
rio de Educacién y Ciencia, Spain, and the universities Fede-
ral Fluminense and Santiago de Compostela for their financial
assitance during the preparation of the manuscript. Our tharks
to the colleagues of our Departments, in special to Celso Cos-
ta and Jose Antonio Oubinla., To Ligia Rodrigues for her pa-
tience in reading the manuscript, pointing ouf some ambiguities
and unclear points in theltext. Finally, we woulq like to
expréss our thagks to the editor of "Notas de Matemética",
Professor Leopoldo Nachbin and the Mathematics editor of
Nbpth-Hbilanq, Dr. Arjen Sevenster, for including this volume

in .their serieés,

The authors.
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CHAPTER I

THE DIFFERENTIAL GEOMETRY OF HIGHER ORDER

JETS AND TANGENT BUNDLES

I.l. - Introduction

This chapter is devoted to the study of basic geometri-
cal notions required forAthe development of the main object of
the text. Some facts.about Jet theory are fgviewed in Section
2, and the reader may also consult the articies of Ehresmann
(1951), (1954), (1955)(a), (1955)(b), the appendix of Aldaya &
Azcdrraga (1980), as well as the books of Golubitsky & Guille-
min (1973) and Michor (1980).

In Section 3, a pafticular case of Jet manifolds is
considered: the tangon% bundle of higher order. We show that
this jet bundle posseses in a canonical way a certain kind of
geometric structure, the so called almost tangent s{ructure of
higher order, introduced by Eliopouloé (1966), and which is a
generalization of the almost tangent gecmetry of the tangent ‘
bundle. This almost tangent geometry of higher order provides
a special differential calculus which is a generalization of
the formalism presented in the i;st chapters of the book of
Godbillon (1969),on Differential Geometry and Classical Mb-
chanics.

Another important fact examined in tiia chapter is the

extension of the notion of "spray" to higher order tangent
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bundles. This concept was introduced for the ordinary situa~
tion by Ambrose, Palais & Singét (19€0), and it is relevant in
Mechanics. The theosry of spray; is closely related %o the
theory of connections on manifolds; therefore, connecticns of
higher order are introduced and the relation between sprays

and connections is studied in some detail,

I,2, - Jet manifolds

2.1. Jets of sectiong

It is assumed throughout the text that all structures,
mappings, etc., are smooth (C -class). Let N and M . be

manifolds with dim N = n,

DEFINITION (1). Consider the triple (M,p,N), where p: M = N

is a mapping. We say that M is a fibered manifold over N

with projection p if the following conditions are verified:

(i) dim M = n+m, where n is a po;itiVB integer,
fi2) p 4is a surjective submeréion,
(1ii1) for any point in M there are v s (Usf) and
(v,g) of M and N, respectively, with p(U) = Vv,
n

such that plof = gep, where Pyt R™ + R is the canoni-
cal projection onto Rn.
REMARK (1). We can easily check that conditions (i) and (ii)
are a direct consequence of condition (iii).

A mappin,_g~ ss N+ M is said to be a section of M id

p-a-‘td& (idgpt;ty on N) and is said a local section if

p-s/U-Idu, for an open subset U of N. We put Sec(M) f«
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the set of all sections on M and Sch(M) for local sections
(sometimes we say "s is a section along U").
Let (M,p,N) be a fibered manifold and F a real

vector space of finite dimension. Suppose that

(i) for each a € N, the fiber N_ = p-l(a) admits a
vector space structure isomorphic to F;
(ii) there is an open covering {Ui}'EI of N so that
i
for each i € I there exists a diffeomorphism
£ p-l(Ui) + U;XF such that for each a € U, the restric-
tion f.l is a1 isomorphism from N_ to [a}xF; then
i|N, a
(Myp,N) is said to be a (locally trivial) fibered vector

bundle, or, simply, vector bundle (for more indications on

vector bundles see Appendix A).

If p: M+ N is a fibered manifold we shall denote by

Ver M the vertical bundle of M over N, that is, Ver M

is the vector subbundle of TM consisting of all tangent

vectors to M which are projected onto O by Tp.

-related,

DEFINITION (2). Way say that s,s’ € Sec(M) are -

0«< k< «, in a point x € N, if

(1) s(x) = 8" (x);
(ii) for all functions f: M + R, the function fes=fas’:
N -+ R is "flat" of order k at x, that is, this
function and all their derivatives up to order k, included, .

ave zero at x.

DEFINITION (3). The equivalence class determined by ~ o is

called jet of order k, or, simply, k-jet at x. For

s € Sec(M), the k-jet of s at x is represented by Jks(x),
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|

k

~
j .s or s (x). The set if all k-jets at x 3is denoted by

x |

J;(M,p,N). We put Jk(M,p;N) for the union U Jt(M,p,N).
: x
When the fibered manifold is the same throughout the 9éxt we

" ok
put simply JkM or, else, J . //

It iS possible to define jets for local segtions. In
such a case, it is simplei to work with germs of sections.
A germ of a section is the equjvalence class determined by
the relation: two sections are related if they have the same

value at every point in the intersection of their domains.

2.2, Jets of mappings

Let N and M #e manifolds. In a similar way as we

did for sections, we ma consider a more general situation

defining the notion of k-jet at a point for a mapping from N

to M. If f: N +» M, |then the equivalence class determined

by ~k is called the

kalx), j:f or Fk(x

-jet of f at x., We put also

for a representative of the class,
The set of k=-jots at is now represented by Ji(N.H) and,
also, Jk(N,M) =U Ji sM). In a similar way, we can define
k=-jets for mappihzs dgfined locally on N (and 30, we may

‘consider k-jeots of th+ir germs) .

REMARK (2). We say that a fibered manifold (M,p,N) is
trivial if there is a manifold B such that M = NxB. Since
the graph of any map f: N + B is the corresponding section
of the fibered manifold NXB over N, we can speak equiva-
lently of a map from N +to B or of a section of NXxB over

N. Throughout the text we will consider only this situation
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and we shall dentify Jk(NxB,p,N) with Jk(N,B).

It can be shown that the set of all k-jets of sections
(or maps) admits a (smooth in our case) differentiable struc-
ture (ses Pomnaret (1978) or Golubitsky & Guillemin (1973),
for example).

The k-jet manifold of mappings (or sections) can be

fibered in different ways:

a¥s Jk(N,H) -+ N3 ak(?k(x)) = x (called source projectién)

gk Jk(N,M) -+ M; ﬂk(zk(x)) = f(x) (called target projection)

~k -
pt: Jk(N,M) + JT(N,M); p:(f (x)) = fr(x), where r < k.

The manifold JX(M,p,N) 4is a submanifold of JX(N,M)
and so the above projections admit restrictions to it (denoted
also by the same symbol). (Jk(M,p.N), ak.N), (Jk(M,p,N),
Bk,M), etc., are the corresponding fibered manifolds. It is
k k
b o

clear that ak = p-sk and ar.p =a , where r < k.

2.3. The k-jet prolongation

Let N and M be manifolds. (M may be fibered over
N). Let JM be the manifold of k-jets (for sake of sympli-

city, we identify here both notations).

DEFINITION (4). The mapping which associates every point
x € N to the k-jet of a mappiné gt N+ M at x is called

the k-jet prolongation (or extension) of g and is represent-
/

ed by jkg or Ek.

So  #%: N+ J*M is defined by x -+ 85(x). It is

clear that| & is a section of the fibered manifold (FMa*,N)
/

/
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{the same considerations are true for the local situation).
It is also clear that skoék = 8.

Let us consider the fibered manifolds (M,p,N) and
(JkM,ak,N). If u: N - JkM is a section, then, in gensral,

only locally there exists a section s: N » M such that o .

2.4, A particular situation

Let N =R" and M = R™xR™. We identify the sections

of such (trivial) manifold to the mappings from R to R

as well as their k-jets. If f: Rn - Rm is reprsented by

lx) = (o suons® Frssns® (Rgaronsz )]s

then, for sake of simplicity, we put f£(x) = (fA(x.)), with
1< a<n, 1s A< m. i

PROPOSITION (1). Two mappings f,g from R" to R' have

the same k-jet at x in r" if and only if for every A in

(1y00eym), A

and gA have the same Taylor polynomial ex=

pansion at x, truncated at order k (inclusive).

Proof: Suppose that A ana gA .have fhe same Taylor ex-
pansion of order k at x. Then f(x) ='g(x) and, if

h: Rm <+ R is an arbitrary function, then the Taylor's expan-
sion of hef and heg at x is obfa{ned by the substitution
of Taylor's expanéion of £ ana gA“(aé x) into .the
Taylor expansion of h at f(x) and -g(x). Se bef « heg
is flat or order k at x. The_convérsb'iﬁ trivial amnd so

the proposition is proved. [

REMARK (3). It follows that all k-jets at x € R" can be
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identified to the m-tuples of polynomials on =2 variables
with degree x. If Jk(n,m) is the vector space of such
polynomials, excluded the constant terms, then Jk(Rn,Rm)

can be identified to RnXRmXJk(n,m) (and, now, it is clear
how one obtains the dimension of such manifold, given by (*)
in §2.1, ch. 1II). 1Iff PXf(x) denotes the Taylor expansion

of £ at x wup to order k, then fk(x)vq (x,f(x),Pkf(x)mdx»

gives the mentioned identification,

Let us see a very simple example: if f(x) = x3,
identifying J3(1,1) to R>  with the aid of at+btZ+ctd ~

~ (a,b,c), then the Taylor expansion of f(x+t) up to order

3

3 is x3+3x2t+3xt2+t and so

F3(x) = (x,8(x),Po8(x)-£(x)) = (x,x7,3x%,3x,1).

Generally, the term of order r of the Taylor poly=-
. i

nomial is

o r b r
1 2 1 3’ f
= Tt f(x) = z - W 0 W 7
r! ( a 3x ) £(x) rl ] B1seees@p ABjeccan 3X, «esdX (=),

where f: R” + R" is smooth, x € ®R" and 1 < a; Se.es a <n.

If we put f£(x) = (fA(x )) = (yA(x )) and yA =
a a ayeeea
= (aryA/ax seedX_ ), then the k-jet at x of f is repre-
a; a,
sented by
(1)

=k A A
f (x) oy (xaly Dya a )-
. oo,

To simplify more the notation we shall conventionate
that

a(r) = aj...a .

For a summation index:



